| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mirval.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							mirval.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							mirval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							mirval.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							mirval.s | 
							⊢ 𝑆  =  ( pInvG ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							mirval.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 7 | 
							
								
							 | 
							mirhl.m | 
							⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							mirhl.k | 
							⊢ 𝐾  =  ( hlG ‘ 𝐺 )  | 
						
						
							| 9 | 
							
								
							 | 
							mirhl.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							mirhl.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								
							 | 
							mirhl.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑃 )  | 
						
						
							| 12 | 
							
								
							 | 
							mirhl.z | 
							⊢ ( 𝜑  →  𝑍  ∈  𝑃 )  | 
						
						
							| 13 | 
							
								
							 | 
							mirhl2.1 | 
							⊢ ( 𝜑  →  𝑋  ≠  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							mirhl2.2 | 
							⊢ ( 𝜑  →  𝑌  ≠  𝐴 )  | 
						
						
							| 15 | 
							
								
							 | 
							mirhl2.3 | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝑋 𝐼 ( 𝑀 ‘ 𝑌 ) ) )  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 9 7 11
							 | 
							mircl | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ∈  𝑃 )  | 
						
						
							| 17 | 
							
								1 2 3 4 5 6 9 7 11 14
							 | 
							mirne | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝑌 )  ≠  𝐴 )  | 
						
						
							| 18 | 
							
								1 2 3 6 10 9 16 15
							 | 
							tgbtwncom | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑀 ‘ 𝑌 ) 𝐼 𝑋 ) )  | 
						
						
							| 19 | 
							
								1 2 3 4 5 6 9 7 11
							 | 
							mirbtwn | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑀 ‘ 𝑌 ) 𝐼 𝑌 ) )  | 
						
						
							| 20 | 
							
								1 3 6 16 9 10 11 17 18 19
							 | 
							tgbtwnconn2 | 
							⊢ ( 𝜑  →  ( 𝑋  ∈  ( 𝐴 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝐴 𝐼 𝑋 ) ) )  | 
						
						
							| 21 | 
							
								1 3 8 10 11 9 6
							 | 
							ishlg | 
							⊢ ( 𝜑  →  ( 𝑋 ( 𝐾 ‘ 𝐴 ) 𝑌  ↔  ( 𝑋  ≠  𝐴  ∧  𝑌  ≠  𝐴  ∧  ( 𝑋  ∈  ( 𝐴 𝐼 𝑌 )  ∨  𝑌  ∈  ( 𝐴 𝐼 𝑋 ) ) ) ) )  | 
						
						
							| 22 | 
							
								13 14 20 21
							 | 
							mpbir3and | 
							⊢ ( 𝜑  →  𝑋 ( 𝐾 ‘ 𝐴 ) 𝑌 )  |