Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirhl.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
8 |
|
mirhl.k |
⊢ 𝐾 = ( hlG ‘ 𝐺 ) |
9 |
|
mirhl.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
10 |
|
mirhl.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑃 ) |
11 |
|
mirhl.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑃 ) |
12 |
|
mirhl.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝑃 ) |
13 |
|
mirhl2.1 |
⊢ ( 𝜑 → 𝑋 ≠ 𝐴 ) |
14 |
|
mirhl2.2 |
⊢ ( 𝜑 → 𝑌 ≠ 𝐴 ) |
15 |
|
mirhl2.3 |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝑋 𝐼 ( 𝑀 ‘ 𝑌 ) ) ) |
16 |
1 2 3 4 5 6 9 7 11
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ∈ 𝑃 ) |
17 |
1 2 3 4 5 6 9 7 11 14
|
mirne |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝑌 ) ≠ 𝐴 ) |
18 |
1 2 3 6 10 9 16 15
|
tgbtwncom |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑀 ‘ 𝑌 ) 𝐼 𝑋 ) ) |
19 |
1 2 3 4 5 6 9 7 11
|
mirbtwn |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑀 ‘ 𝑌 ) 𝐼 𝑌 ) ) |
20 |
1 3 6 16 9 10 11 17 18 19
|
tgbtwnconn2 |
⊢ ( 𝜑 → ( 𝑋 ∈ ( 𝐴 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝐴 𝐼 𝑋 ) ) ) |
21 |
1 3 8 10 11 9 6
|
ishlg |
⊢ ( 𝜑 → ( 𝑋 ( 𝐾 ‘ 𝐴 ) 𝑌 ↔ ( 𝑋 ≠ 𝐴 ∧ 𝑌 ≠ 𝐴 ∧ ( 𝑋 ∈ ( 𝐴 𝐼 𝑌 ) ∨ 𝑌 ∈ ( 𝐴 𝐼 𝑋 ) ) ) ) ) |
22 |
13 14 20 21
|
mpbir3and |
⊢ ( 𝜑 → 𝑋 ( 𝐾 ‘ 𝐴 ) 𝑌 ) |