Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirln.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
8 |
|
mirln.1 |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
9 |
|
mirln.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |
10 |
|
mirln.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐴 ) = ( 𝑀 ‘ 𝐵 ) ) |
13 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐺 ∈ TarskiG ) |
14 |
1 4 3 6 8 9
|
tglnpt |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
16 |
1 2 3 4 5 13 15 7
|
mircinv |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
17 |
12 16
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐵 ) = 𝐴 ) |
18 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ 𝐷 ) |
19 |
17 18
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝐴 = 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝐷 ) |
20 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
21 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
22 |
1 4 3 6 8 10
|
tglnpt |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
23 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
24 |
1 2 3 4 5 20 21 7 23
|
mircl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) |
26 |
1 2 3 4 5 6 14 7 22
|
mirbtwn |
⊢ ( 𝜑 → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
28 |
1 3 4 20 21 23 24 25 27
|
btwnlng2 |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 𝐴 𝐿 𝐵 ) ) |
29 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
30 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝐷 ) |
31 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝐷 ) |
32 |
1 3 4 20 21 23 25 25 29 30 31
|
tglinethru |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → 𝐷 = ( 𝐴 𝐿 𝐵 ) ) |
33 |
28 32
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝐷 ) |
34 |
19 33
|
pm2.61dane |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝐷 ) |