| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirln2.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
| 8 |
|
mirln2.d |
⊢ ( 𝜑 → 𝐷 ∈ ran 𝐿 ) |
| 9 |
|
mirln2.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 10 |
|
mirln2.1 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐷 ) |
| 11 |
|
mirln2.2 |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝐷 ) |
| 12 |
1 4 3 6 8 10
|
tglnpt |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
| 13 |
1 2 3 4 5 6 9 7 12
|
mirinv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐵 ) = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 14 |
13
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐴 = 𝐵 ) |
| 15 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐵 ∈ 𝐷 ) |
| 16 |
14 15
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 17 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐺 ∈ TarskiG ) |
| 18 |
1 4 3 6 8 11
|
tglnpt |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
| 20 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐵 ∈ 𝑃 ) |
| 21 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐴 ∈ 𝑃 ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) |
| 23 |
1 2 3 4 5 17 21 7 20
|
mirbtwn |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) ) |
| 24 |
1 3 4 17 19 20 21 22 23
|
btwnlng1 |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐴 ∈ ( ( 𝑀 ‘ 𝐵 ) 𝐿 𝐵 ) ) |
| 25 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐷 ∈ ran 𝐿 ) |
| 26 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → ( 𝑀 ‘ 𝐵 ) ∈ 𝐷 ) |
| 27 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐵 ∈ 𝐷 ) |
| 28 |
1 3 4 17 19 20 22 22 25 26 27
|
tglinethru |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐷 = ( ( 𝑀 ‘ 𝐵 ) 𝐿 𝐵 ) ) |
| 29 |
24 28
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) ≠ 𝐵 ) → 𝐴 ∈ 𝐷 ) |
| 30 |
16 29
|
pm2.61dane |
⊢ ( 𝜑 → 𝐴 ∈ 𝐷 ) |