Step |
Hyp |
Ref |
Expression |
1 |
|
ismid.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
ismid.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
ismid.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
ismid.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
5 |
|
ismid.1 |
⊢ ( 𝜑 → 𝐺 DimTarskiG≥ 2 ) |
6 |
|
midcl.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
7 |
|
midcl.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
8 |
|
mirmid.s |
⊢ 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 ) |
9 |
|
mirmid.x |
⊢ ( 𝜑 → 𝑀 ∈ 𝑃 ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) |
11 |
|
eqid |
⊢ ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 ) |
12 |
1 2 3 4 5 6 7
|
midcl |
⊢ ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 ) |
13 |
1 2 3 4 5 6 7 11 12
|
ismidb |
⊢ ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) |
14 |
10 13
|
mpbird |
⊢ ( 𝜑 → 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( 𝑆 ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) ) |
16 |
|
eqid |
⊢ ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 ) |
17 |
1 2 3 16 11 4 9 8 6 12
|
mirmir2 |
⊢ ( 𝜑 → ( 𝑆 ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
18 |
15 17
|
eqtrd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ) |
19 |
1 2 3 16 11 4 9 8 6
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) ∈ 𝑃 ) |
20 |
1 2 3 16 11 4 9 8 7
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐵 ) ∈ 𝑃 ) |
21 |
1 2 3 16 11 4 9 8 12
|
mircl |
⊢ ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ∈ 𝑃 ) |
22 |
1 2 3 4 5 19 20 11 21
|
ismidb |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆 ‘ 𝐴 ) ) ↔ ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ) |
23 |
18 22
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆 ‘ 𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) |