Metamath Proof Explorer


Theorem mirmid

Description: Point inversion preserves midpoints. (Contributed by Thierry Arnoux, 12-Dec-2019)

Ref Expression
Hypotheses ismid.p 𝑃 = ( Base ‘ 𝐺 )
ismid.d = ( dist ‘ 𝐺 )
ismid.i 𝐼 = ( Itv ‘ 𝐺 )
ismid.g ( 𝜑𝐺 ∈ TarskiG )
ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
midcl.1 ( 𝜑𝐴𝑃 )
midcl.2 ( 𝜑𝐵𝑃 )
mirmid.s 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 )
mirmid.x ( 𝜑𝑀𝑃 )
Assertion mirmid ( 𝜑 → ( ( 𝑆𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ismid.p 𝑃 = ( Base ‘ 𝐺 )
2 ismid.d = ( dist ‘ 𝐺 )
3 ismid.i 𝐼 = ( Itv ‘ 𝐺 )
4 ismid.g ( 𝜑𝐺 ∈ TarskiG )
5 ismid.1 ( 𝜑𝐺 DimTarskiG≥ 2 )
6 midcl.1 ( 𝜑𝐴𝑃 )
7 midcl.2 ( 𝜑𝐵𝑃 )
8 mirmid.s 𝑆 = ( ( pInvG ‘ 𝐺 ) ‘ 𝑀 )
9 mirmid.x ( 𝜑𝑀𝑃 )
10 eqidd ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) )
11 eqid ( pInvG ‘ 𝐺 ) = ( pInvG ‘ 𝐺 )
12 1 2 3 4 5 6 7 midcl ( 𝜑 → ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ∈ 𝑃 )
13 1 2 3 4 5 6 7 11 12 ismidb ( 𝜑 → ( 𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ↔ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) )
14 10 13 mpbird ( 𝜑𝐵 = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) )
15 14 fveq2d ( 𝜑 → ( 𝑆𝐵 ) = ( 𝑆 ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) )
16 eqid ( LineG ‘ 𝐺 ) = ( LineG ‘ 𝐺 )
17 1 2 3 16 11 4 9 8 6 12 mirmir2 ( 𝜑 → ( 𝑆 ‘ ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ‘ 𝐴 ) ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆𝐴 ) ) )
18 15 17 eqtrd ( 𝜑 → ( 𝑆𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆𝐴 ) ) )
19 1 2 3 16 11 4 9 8 6 mircl ( 𝜑 → ( 𝑆𝐴 ) ∈ 𝑃 )
20 1 2 3 16 11 4 9 8 7 mircl ( 𝜑 → ( 𝑆𝐵 ) ∈ 𝑃 )
21 1 2 3 16 11 4 9 8 12 mircl ( 𝜑 → ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ∈ 𝑃 )
22 1 2 3 4 5 19 20 11 21 ismidb ( 𝜑 → ( ( 𝑆𝐵 ) = ( ( ( pInvG ‘ 𝐺 ) ‘ ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) ‘ ( 𝑆𝐴 ) ) ↔ ( ( 𝑆𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) ) )
23 18 22 mpbid ( 𝜑 → ( ( 𝑆𝐴 ) ( midG ‘ 𝐺 ) ( 𝑆𝐵 ) ) = ( 𝑆 ‘ ( 𝐴 ( midG ‘ 𝐺 ) 𝐵 ) ) )