| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mirval.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							mirval.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							mirval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							mirval.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							mirval.s | 
							⊢ 𝑆  =  ( pInvG ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							mirval.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 7 | 
							
								
							 | 
							mirval.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							mirfv.m | 
							⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							mirmir.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							mircl | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ∈  𝑃 )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							mircgr | 
							⊢ ( 𝜑  →  ( 𝐴  −  ( 𝑀 ‘ 𝐵 ) )  =  ( 𝐴  −  𝐵 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  =  ( 𝐴  −  ( 𝑀 ‘ 𝐵 ) ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							mirbtwn | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ( 𝑀 ‘ 𝐵 ) 𝐼 𝐵 ) )  | 
						
						
							| 14 | 
							
								1 2 3 6 10 7 9 13
							 | 
							tgbtwncom | 
							⊢ ( 𝜑  →  𝐴  ∈  ( 𝐵 𝐼 ( 𝑀 ‘ 𝐵 ) ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7 8 10 9 12 14
							 | 
							ismir | 
							⊢ ( 𝜑  →  𝐵  =  ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  |