Metamath Proof Explorer


Theorem mirmir2

Description: Point inversion of a point inversion through another point. (Contributed by Thierry Arnoux, 3-Nov-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
miriso.1 ( 𝜑𝑋𝑃 )
miriso.2 ( 𝜑𝑌𝑃 )
Assertion mirmir2 ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ ( 𝑀𝑌 ) ) ‘ ( 𝑀𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 miriso.1 ( 𝜑𝑋𝑃 )
10 miriso.2 ( 𝜑𝑌𝑃 )
11 1 2 3 4 5 6 7 8 10 mircl ( 𝜑 → ( 𝑀𝑌 ) ∈ 𝑃 )
12 eqid ( 𝑆 ‘ ( 𝑀𝑌 ) ) = ( 𝑆 ‘ ( 𝑀𝑌 ) )
13 1 2 3 4 5 6 7 8 9 mircl ( 𝜑 → ( 𝑀𝑋 ) ∈ 𝑃 )
14 eqid ( 𝑆𝑌 ) = ( 𝑆𝑌 )
15 1 2 3 4 5 6 10 14 9 mircl ( 𝜑 → ( ( 𝑆𝑌 ) ‘ 𝑋 ) ∈ 𝑃 )
16 1 2 3 4 5 6 7 8 15 mircl ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) ∈ 𝑃 )
17 1 2 3 4 5 6 10 14 9 mircgr ( 𝜑 → ( 𝑌 ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) = ( 𝑌 𝑋 ) )
18 1 2 3 4 5 6 7 8 10 15 10 9 17 mircgrs ( 𝜑 → ( ( 𝑀𝑌 ) ( 𝑀 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) ) = ( ( 𝑀𝑌 ) ( 𝑀𝑋 ) ) )
19 1 2 3 4 5 6 10 14 9 mirbtwn ( 𝜑𝑌 ∈ ( ( ( 𝑆𝑌 ) ‘ 𝑋 ) 𝐼 𝑋 ) )
20 1 2 3 4 5 6 7 8 15 10 9 19 mirbtwni ( 𝜑 → ( 𝑀𝑌 ) ∈ ( ( 𝑀 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) 𝐼 ( 𝑀𝑋 ) ) )
21 1 2 3 4 5 6 11 12 13 16 18 20 ismir ( 𝜑 → ( 𝑀 ‘ ( ( 𝑆𝑌 ) ‘ 𝑋 ) ) = ( ( 𝑆 ‘ ( 𝑀𝑌 ) ) ‘ ( 𝑀𝑋 ) ) )