Metamath Proof Explorer


Theorem mirmot

Description: Point investion is a motion of the geometric space. Theorem 7.14 of Schwabhauser p. 51. (Contributed by Thierry Arnoux, 15-Dec-2019)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirmot.m 𝑀 = ( 𝑆𝐴 )
mirmot.a ( 𝜑𝐴𝑃 )
Assertion mirmot ( 𝜑𝑀 ∈ ( 𝐺 Ismt 𝐺 ) )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirmot.m 𝑀 = ( 𝑆𝐴 )
8 mirmot.a ( 𝜑𝐴𝑃 )
9 1 2 3 4 5 6 8 7 mirf1o ( 𝜑𝑀 : 𝑃1-1-onto𝑃 )
10 6 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐺 ∈ TarskiG )
11 8 adantr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝐴𝑃 )
12 simprl ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝑎𝑃 )
13 simprr ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → 𝑏𝑃 )
14 1 2 3 4 5 10 11 7 12 13 miriso ( ( 𝜑 ∧ ( 𝑎𝑃𝑏𝑃 ) ) → ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) )
15 14 ralrimivva ( 𝜑 → ∀ 𝑎𝑃𝑏𝑃 ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) )
16 1 2 ismot ( 𝐺 ∈ TarskiG → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
17 6 16 syl ( 𝜑 → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃1-1-onto𝑃 ∧ ∀ 𝑎𝑃𝑏𝑃 ( ( 𝑀𝑎 ) ( 𝑀𝑏 ) ) = ( 𝑎 𝑏 ) ) ) )
18 9 15 17 mpbir2and ( 𝜑𝑀 ∈ ( 𝐺 Ismt 𝐺 ) )