Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirmot.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
8 |
|
mirmot.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
9 |
1 2 3 4 5 6 8 7
|
mirf1o |
⊢ ( 𝜑 → 𝑀 : 𝑃 –1-1-onto→ 𝑃 ) |
10 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐺 ∈ TarskiG ) |
11 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝐴 ∈ 𝑃 ) |
12 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑎 ∈ 𝑃 ) |
13 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → 𝑏 ∈ 𝑃 ) |
14 |
1 2 3 4 5 10 11 7 12 13
|
miriso |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑃 ∧ 𝑏 ∈ 𝑃 ) ) → ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
15 |
14
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) |
16 |
1 2
|
ismot |
⊢ ( 𝐺 ∈ TarskiG → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
17 |
6 16
|
syl |
⊢ ( 𝜑 → ( 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ↔ ( 𝑀 : 𝑃 –1-1-onto→ 𝑃 ∧ ∀ 𝑎 ∈ 𝑃 ∀ 𝑏 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) − ( 𝑀 ‘ 𝑏 ) ) = ( 𝑎 − 𝑏 ) ) ) ) |
18 |
9 15 17
|
mpbir2and |
⊢ ( 𝜑 → 𝑀 ∈ ( 𝐺 Ismt 𝐺 ) ) |