Metamath Proof Explorer


Theorem mirne

Description: Mirror of non-center point cannot be the center point. (Contributed by Thierry Arnoux, 27-Sep-2020)

Ref Expression
Hypotheses mirval.p 𝑃 = ( Base ‘ 𝐺 )
mirval.d = ( dist ‘ 𝐺 )
mirval.i 𝐼 = ( Itv ‘ 𝐺 )
mirval.l 𝐿 = ( LineG ‘ 𝐺 )
mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
mirval.g ( 𝜑𝐺 ∈ TarskiG )
mirval.a ( 𝜑𝐴𝑃 )
mirfv.m 𝑀 = ( 𝑆𝐴 )
mirinv.b ( 𝜑𝐵𝑃 )
mirne.1 ( 𝜑𝐵𝐴 )
Assertion mirne ( 𝜑 → ( 𝑀𝐵 ) ≠ 𝐴 )

Proof

Step Hyp Ref Expression
1 mirval.p 𝑃 = ( Base ‘ 𝐺 )
2 mirval.d = ( dist ‘ 𝐺 )
3 mirval.i 𝐼 = ( Itv ‘ 𝐺 )
4 mirval.l 𝐿 = ( LineG ‘ 𝐺 )
5 mirval.s 𝑆 = ( pInvG ‘ 𝐺 )
6 mirval.g ( 𝜑𝐺 ∈ TarskiG )
7 mirval.a ( 𝜑𝐴𝑃 )
8 mirfv.m 𝑀 = ( 𝑆𝐴 )
9 mirinv.b ( 𝜑𝐵𝑃 )
10 mirne.1 ( 𝜑𝐵𝐴 )
11 simpr ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → ( 𝑀𝐵 ) = 𝐴 )
12 11 fveq2d ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → ( 𝑀 ‘ ( 𝑀𝐵 ) ) = ( 𝑀𝐴 ) )
13 1 2 3 4 5 6 7 8 9 mirmir ( 𝜑 → ( 𝑀 ‘ ( 𝑀𝐵 ) ) = 𝐵 )
14 13 adantr ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → ( 𝑀 ‘ ( 𝑀𝐵 ) ) = 𝐵 )
15 eqid 𝐴 = 𝐴
16 1 2 3 4 5 6 7 8 7 mirinv ( 𝜑 → ( ( 𝑀𝐴 ) = 𝐴𝐴 = 𝐴 ) )
17 15 16 mpbiri ( 𝜑 → ( 𝑀𝐴 ) = 𝐴 )
18 17 adantr ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → ( 𝑀𝐴 ) = 𝐴 )
19 12 14 18 3eqtr3d ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → 𝐵 = 𝐴 )
20 10 adantr ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → 𝐵𝐴 )
21 20 neneqd ( ( 𝜑 ∧ ( 𝑀𝐵 ) = 𝐴 ) → ¬ 𝐵 = 𝐴 )
22 19 21 pm2.65da ( 𝜑 → ¬ ( 𝑀𝐵 ) = 𝐴 )
23 22 neqned ( 𝜑 → ( 𝑀𝐵 ) ≠ 𝐴 )