| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							mirval.p | 
							⊢ 𝑃  =  ( Base ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							mirval.d | 
							⊢  −   =  ( dist ‘ 𝐺 )  | 
						
						
							| 3 | 
							
								
							 | 
							mirval.i | 
							⊢ 𝐼  =  ( Itv ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							mirval.l | 
							⊢ 𝐿  =  ( LineG ‘ 𝐺 )  | 
						
						
							| 5 | 
							
								
							 | 
							mirval.s | 
							⊢ 𝑆  =  ( pInvG ‘ 𝐺 )  | 
						
						
							| 6 | 
							
								
							 | 
							mirval.g | 
							⊢ ( 𝜑  →  𝐺  ∈  TarskiG )  | 
						
						
							| 7 | 
							
								
							 | 
							mirval.a | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑃 )  | 
						
						
							| 8 | 
							
								
							 | 
							mirfv.m | 
							⊢ 𝑀  =  ( 𝑆 ‘ 𝐴 )  | 
						
						
							| 9 | 
							
								
							 | 
							mirinv.b | 
							⊢ ( 𝜑  →  𝐵  ∈  𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							mirne.1 | 
							⊢ ( 𝜑  →  𝐵  ≠  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  | 
						
						
							| 12 | 
							
								11
							 | 
							fveq2d | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) )  =  ( 𝑀 ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								1 2 3 4 5 6 7 8 9
							 | 
							mirmir | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) )  =  𝐵 )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							⊢ 𝐴  =  𝐴  | 
						
						
							| 16 | 
							
								1 2 3 4 5 6 7 8 7
							 | 
							mirinv | 
							⊢ ( 𝜑  →  ( ( 𝑀 ‘ 𝐴 )  =  𝐴  ↔  𝐴  =  𝐴 ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							mpbiri | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  ( 𝑀 ‘ 𝐴 )  =  𝐴 )  | 
						
						
							| 19 | 
							
								12 14 18
							 | 
							3eqtr3d | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  𝐵  =  𝐴 )  | 
						
						
							| 20 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  𝐵  ≠  𝐴 )  | 
						
						
							| 21 | 
							
								20
							 | 
							neneqd | 
							⊢ ( ( 𝜑  ∧  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  →  ¬  𝐵  =  𝐴 )  | 
						
						
							| 22 | 
							
								19 21
							 | 
							pm2.65da | 
							⊢ ( 𝜑  →  ¬  ( 𝑀 ‘ 𝐵 )  =  𝐴 )  | 
						
						
							| 23 | 
							
								22
							 | 
							neqned | 
							⊢ ( 𝜑  →  ( 𝑀 ‘ 𝐵 )  ≠  𝐴 )  |