Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
9 |
|
mirinv.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
10 |
|
mirne.1 |
⊢ ( 𝜑 → 𝐵 ≠ 𝐴 ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → ( 𝑀 ‘ 𝐵 ) = 𝐴 ) |
12 |
11
|
fveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = ( 𝑀 ‘ 𝐴 ) ) |
13 |
1 2 3 4 5 6 7 8 9
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) |
15 |
|
eqid |
⊢ 𝐴 = 𝐴 |
16 |
1 2 3 4 5 6 7 8 7
|
mirinv |
⊢ ( 𝜑 → ( ( 𝑀 ‘ 𝐴 ) = 𝐴 ↔ 𝐴 = 𝐴 ) ) |
17 |
15 16
|
mpbiri |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
18 |
17
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → ( 𝑀 ‘ 𝐴 ) = 𝐴 ) |
19 |
12 14 18
|
3eqtr3d |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → 𝐵 = 𝐴 ) |
20 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → 𝐵 ≠ 𝐴 ) |
21 |
20
|
neneqd |
⊢ ( ( 𝜑 ∧ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) → ¬ 𝐵 = 𝐴 ) |
22 |
19 21
|
pm2.65da |
⊢ ( 𝜑 → ¬ ( 𝑀 ‘ 𝐵 ) = 𝐴 ) |
23 |
22
|
neqned |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ≠ 𝐴 ) |