Step |
Hyp |
Ref |
Expression |
1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
8 |
|
mirfv.m |
⊢ 𝑀 = ( 𝑆 ‘ 𝐴 ) |
9 |
|
mirmir.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑃 ) |
10 |
1 2 3 4 5 6 7 8 9
|
mircl |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ) |
11 |
1 2 3 4 5 6 7 8 9
|
mirmir |
⊢ ( 𝜑 → ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) |
12 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → 𝐺 ∈ TarskiG ) |
13 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → 𝐴 ∈ 𝑃 ) |
14 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → 𝑎 ∈ 𝑃 ) |
15 |
1 2 3 4 5 12 13 8 14
|
mirmir |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) ) = 𝑎 ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → ( 𝑀 ‘ 𝑎 ) = 𝐵 ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → ( 𝑀 ‘ ( 𝑀 ‘ 𝑎 ) ) = ( 𝑀 ‘ 𝐵 ) ) |
18 |
15 17
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) ∧ ( 𝑀 ‘ 𝑎 ) = 𝐵 ) → 𝑎 = ( 𝑀 ‘ 𝐵 ) ) |
19 |
18
|
ex |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝑃 ) → ( ( 𝑀 ‘ 𝑎 ) = 𝐵 → 𝑎 = ( 𝑀 ‘ 𝐵 ) ) ) |
20 |
19
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) = 𝐵 → 𝑎 = ( 𝑀 ‘ 𝐵 ) ) ) |
21 |
|
fveqeq2 |
⊢ ( 𝑎 = ( 𝑀 ‘ 𝐵 ) → ( ( 𝑀 ‘ 𝑎 ) = 𝐵 ↔ ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ) ) |
22 |
21
|
eqreu |
⊢ ( ( ( 𝑀 ‘ 𝐵 ) ∈ 𝑃 ∧ ( 𝑀 ‘ ( 𝑀 ‘ 𝐵 ) ) = 𝐵 ∧ ∀ 𝑎 ∈ 𝑃 ( ( 𝑀 ‘ 𝑎 ) = 𝐵 → 𝑎 = ( 𝑀 ‘ 𝐵 ) ) ) → ∃! 𝑎 ∈ 𝑃 ( 𝑀 ‘ 𝑎 ) = 𝐵 ) |
23 |
10 11 20 22
|
syl3anc |
⊢ ( 𝜑 → ∃! 𝑎 ∈ 𝑃 ( 𝑀 ‘ 𝑎 ) = 𝐵 ) |