| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mirval.p |
⊢ 𝑃 = ( Base ‘ 𝐺 ) |
| 2 |
|
mirval.d |
⊢ − = ( dist ‘ 𝐺 ) |
| 3 |
|
mirval.i |
⊢ 𝐼 = ( Itv ‘ 𝐺 ) |
| 4 |
|
mirval.l |
⊢ 𝐿 = ( LineG ‘ 𝐺 ) |
| 5 |
|
mirval.s |
⊢ 𝑆 = ( pInvG ‘ 𝐺 ) |
| 6 |
|
mirval.g |
⊢ ( 𝜑 → 𝐺 ∈ TarskiG ) |
| 7 |
|
mirval.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑃 ) |
| 8 |
|
df-mir |
⊢ pInvG = ( 𝑔 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑧 ∈ ( Base ‘ 𝑔 ) ( ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) ) ) ) ) ) |
| 9 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = ( Base ‘ 𝐺 ) ) |
| 10 |
9 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Base ‘ 𝑔 ) = 𝑃 ) |
| 11 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = ( dist ‘ 𝐺 ) ) |
| 12 |
11 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( dist ‘ 𝑔 ) = − ) |
| 13 |
12
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 − 𝑧 ) ) |
| 14 |
12
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) = ( 𝑥 − 𝑦 ) ) |
| 15 |
13 14
|
eqeq12d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) ↔ ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ) ) |
| 16 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Itv ‘ 𝑔 ) = ( Itv ‘ 𝐺 ) ) |
| 17 |
16 3
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Itv ‘ 𝑔 ) = 𝐼 ) |
| 18 |
17
|
oveqd |
⊢ ( 𝑔 = 𝐺 → ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) = ( 𝑧 𝐼 𝑦 ) ) |
| 19 |
18
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) ↔ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) |
| 20 |
15 19
|
anbi12d |
⊢ ( 𝑔 = 𝐺 → ( ( ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) ) ↔ ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) |
| 21 |
10 20
|
riotaeqbidv |
⊢ ( 𝑔 = 𝐺 → ( ℩ 𝑧 ∈ ( Base ‘ 𝑔 ) ( ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) ) ) = ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) |
| 22 |
10 21
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑧 ∈ ( Base ‘ 𝑔 ) ( ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) |
| 23 |
10 22
|
mpteq12dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑥 ∈ ( Base ‘ 𝑔 ) ↦ ( 𝑦 ∈ ( Base ‘ 𝑔 ) ↦ ( ℩ 𝑧 ∈ ( Base ‘ 𝑔 ) ( ( 𝑥 ( dist ‘ 𝑔 ) 𝑧 ) = ( 𝑥 ( dist ‘ 𝑔 ) 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 ( Itv ‘ 𝑔 ) 𝑦 ) ) ) ) ) = ( 𝑥 ∈ 𝑃 ↦ ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) ) |
| 24 |
6
|
elexd |
⊢ ( 𝜑 → 𝐺 ∈ V ) |
| 25 |
1
|
fvexi |
⊢ 𝑃 ∈ V |
| 26 |
25
|
mptex |
⊢ ( 𝑥 ∈ 𝑃 ↦ ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) ∈ V |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝑃 ↦ ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) ∈ V ) |
| 28 |
8 23 24 27
|
fvmptd3 |
⊢ ( 𝜑 → ( pInvG ‘ 𝐺 ) = ( 𝑥 ∈ 𝑃 ↦ ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) ) |
| 29 |
5 28
|
eqtrid |
⊢ ( 𝜑 → 𝑆 = ( 𝑥 ∈ 𝑃 ↦ ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) ) |
| 30 |
|
simpll |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → 𝑥 = 𝐴 ) |
| 31 |
30
|
oveq1d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑥 − 𝑧 ) = ( 𝐴 − 𝑧 ) ) |
| 32 |
30
|
oveq1d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑥 − 𝑦 ) = ( 𝐴 − 𝑦 ) ) |
| 33 |
31 32
|
eqeq12d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ↔ ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ) ) |
| 34 |
30
|
eleq1d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ↔ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) |
| 35 |
33 34
|
anbi12d |
⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) ∧ 𝑧 ∈ 𝑃 ) → ( ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ↔ ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) |
| 36 |
35
|
riotabidva |
⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 ∈ 𝑃 ) → ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) = ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) |
| 37 |
36
|
mpteq2dva |
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝑥 − 𝑧 ) = ( 𝑥 − 𝑦 ) ∧ 𝑥 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) = ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) |
| 39 |
25
|
mptex |
⊢ ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ∈ V |
| 40 |
39
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ∈ V ) |
| 41 |
29 38 7 40
|
fvmptd |
⊢ ( 𝜑 → ( 𝑆 ‘ 𝐴 ) = ( 𝑦 ∈ 𝑃 ↦ ( ℩ 𝑧 ∈ 𝑃 ( ( 𝐴 − 𝑧 ) = ( 𝐴 − 𝑦 ) ∧ 𝐴 ∈ ( 𝑧 𝐼 𝑦 ) ) ) ) ) |