Step |
Hyp |
Ref |
Expression |
1 |
|
mndcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mndcl.p |
⊢ + = ( +g ‘ 𝐺 ) |
3 |
|
mnd4g.1 |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
4 |
|
mnd4g.2 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
mnd4g.3 |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
|
mnd4g.4 |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
7 |
|
mnd12g.5 |
⊢ ( 𝜑 → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |
8 |
7
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( ( 𝑌 + 𝑋 ) + 𝑍 ) ) |
9 |
1 2
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
10 |
3 4 5 6 9
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) ) |
11 |
1 2
|
mndass |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ) ) → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
12 |
3 5 4 6 11
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝑌 + 𝑋 ) + 𝑍 ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |
13 |
8 10 12
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑋 + ( 𝑌 + 𝑍 ) ) = ( 𝑌 + ( 𝑋 + 𝑍 ) ) ) |