| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mndcl.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | mnd4g.1 | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 4 |  | mnd4g.2 | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 5 |  | mnd4g.3 | ⊢ ( 𝜑  →  𝑌  ∈  𝐵 ) | 
						
							| 6 |  | mnd4g.4 | ⊢ ( 𝜑  →  𝑍  ∈  𝐵 ) | 
						
							| 7 |  | mnd12g.5 | ⊢ ( 𝜑  →  ( 𝑋  +  𝑌 )  =  ( 𝑌  +  𝑋 ) ) | 
						
							| 8 | 7 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( ( 𝑌  +  𝑋 )  +  𝑍 ) ) | 
						
							| 9 | 1 2 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑋  ∈  𝐵  ∧  𝑌  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) ) | 
						
							| 10 | 3 4 5 6 9 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑋  +  𝑌 )  +  𝑍 )  =  ( 𝑋  +  ( 𝑌  +  𝑍 ) ) ) | 
						
							| 11 | 1 2 | mndass | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑌  ∈  𝐵  ∧  𝑋  ∈  𝐵  ∧  𝑍  ∈  𝐵 ) )  →  ( ( 𝑌  +  𝑋 )  +  𝑍 )  =  ( 𝑌  +  ( 𝑋  +  𝑍 ) ) ) | 
						
							| 12 | 3 5 4 6 11 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑌  +  𝑋 )  +  𝑍 )  =  ( 𝑌  +  ( 𝑋  +  𝑍 ) ) ) | 
						
							| 13 | 8 10 12 | 3eqtr3d | ⊢ ( 𝜑  →  ( 𝑋  +  ( 𝑌  +  𝑍 ) )  =  ( 𝑌  +  ( 𝑋  +  𝑍 ) ) ) |