Metamath Proof Explorer


Theorem mndbn0

Description: The base set of a monoid is not empty. Statement in Lang p. 3. (Contributed by AV, 29-Dec-2023)

Ref Expression
Hypothesis mndbn0.b 𝐵 = ( Base ‘ 𝐺 )
Assertion mndbn0 ( 𝐺 ∈ Mnd → 𝐵 ≠ ∅ )

Proof

Step Hyp Ref Expression
1 mndbn0.b 𝐵 = ( Base ‘ 𝐺 )
2 eqid ( 0g𝐺 ) = ( 0g𝐺 )
3 1 2 mndidcl ( 𝐺 ∈ Mnd → ( 0g𝐺 ) ∈ 𝐵 )
4 3 ne0d ( 𝐺 ∈ Mnd → 𝐵 ≠ ∅ )