Metamath Proof Explorer


Theorem mndcl

Description: Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011) (Revised by Mario Carneiro, 6-Jan-2015) (Proof shortened by AV, 8-Feb-2020)

Ref Expression
Hypotheses mndcl.b 𝐵 = ( Base ‘ 𝐺 )
mndcl.p + = ( +g𝐺 )
Assertion mndcl ( ( 𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 mndcl.b 𝐵 = ( Base ‘ 𝐺 )
2 mndcl.p + = ( +g𝐺 )
3 mndmgm ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm )
4 1 2 mgmcl ( ( 𝐺 ∈ Mgm ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
5 3 4 syl3an1 ( ( 𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )