Database
BASIC ALGEBRAIC STRUCTURES
Monoids
Definition and basic properties of monoids
mndcl
Metamath Proof Explorer
Description: Closure of the operation of a monoid. (Contributed by NM , 14-Aug-2011)
(Revised by Mario Carneiro , 6-Jan-2015) (Proof shortened by AV , 8-Feb-2020)
Ref
Expression
Hypotheses
mndcl.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
mndcl.p
⊢ + = ( +g ‘ 𝐺 )
Assertion
mndcl
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
Proof
Step
Hyp
Ref
Expression
1
mndcl.b
⊢ 𝐵 = ( Base ‘ 𝐺 )
2
mndcl.p
⊢ + = ( +g ‘ 𝐺 )
3
mndmgm
⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm )
4
1 2
mgmcl
⊢ ( ( 𝐺 ∈ Mgm ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )
5
3 4
syl3an1
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 + 𝑌 ) ∈ 𝐵 )