| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndfo.b | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mndfo.p | ⊢  +   =  ( +g ‘ 𝐺 ) | 
						
							| 3 |  | eqid | ⊢ ( +𝑓 ‘ 𝐺 )  =  ( +𝑓 ‘ 𝐺 ) | 
						
							| 4 | 1 3 | mndpfo | ⊢ ( 𝐺  ∈  Mnd  →  ( +𝑓 ‘ 𝐺 ) : ( 𝐵  ×  𝐵 ) –onto→ 𝐵 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐺  ∈  Mnd  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →  ( +𝑓 ‘ 𝐺 ) : ( 𝐵  ×  𝐵 ) –onto→ 𝐵 ) | 
						
							| 6 | 1 2 3 | plusfeq | ⊢ (  +   Fn  ( 𝐵  ×  𝐵 )  →  ( +𝑓 ‘ 𝐺 )  =   +  ) | 
						
							| 7 | 6 | eqcomd | ⊢ (  +   Fn  ( 𝐵  ×  𝐵 )  →   +   =  ( +𝑓 ‘ 𝐺 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐺  ∈  Mnd  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →   +   =  ( +𝑓 ‘ 𝐺 ) ) | 
						
							| 9 |  | foeq1 | ⊢ (  +   =  ( +𝑓 ‘ 𝐺 )  →  (  +  : ( 𝐵  ×  𝐵 ) –onto→ 𝐵  ↔  ( +𝑓 ‘ 𝐺 ) : ( 𝐵  ×  𝐵 ) –onto→ 𝐵 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( ( 𝐺  ∈  Mnd  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →  (  +  : ( 𝐵  ×  𝐵 ) –onto→ 𝐵  ↔  ( +𝑓 ‘ 𝐺 ) : ( 𝐵  ×  𝐵 ) –onto→ 𝐵 ) ) | 
						
							| 11 | 5 10 | mpbird | ⊢ ( ( 𝐺  ∈  Mnd  ∧   +   Fn  ( 𝐵  ×  𝐵 ) )  →   +  : ( 𝐵  ×  𝐵 ) –onto→ 𝐵 ) |