Metamath Proof Explorer


Theorem mndfo

Description: The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013) (Proof shortened by AV, 23-Jan-2020)

Ref Expression
Hypotheses mndfo.b 𝐵 = ( Base ‘ 𝐺 )
mndfo.p + = ( +g𝐺 )
Assertion mndfo ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) –onto𝐵 )

Proof

Step Hyp Ref Expression
1 mndfo.b 𝐵 = ( Base ‘ 𝐺 )
2 mndfo.p + = ( +g𝐺 )
3 eqid ( +𝑓𝐺 ) = ( +𝑓𝐺 )
4 1 3 mndpfo ( 𝐺 ∈ Mnd → ( +𝑓𝐺 ) : ( 𝐵 × 𝐵 ) –onto𝐵 )
5 4 adantr ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( +𝑓𝐺 ) : ( 𝐵 × 𝐵 ) –onto𝐵 )
6 1 2 3 plusfeq ( + Fn ( 𝐵 × 𝐵 ) → ( +𝑓𝐺 ) = + )
7 6 eqcomd ( + Fn ( 𝐵 × 𝐵 ) → + = ( +𝑓𝐺 ) )
8 7 adantl ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + = ( +𝑓𝐺 ) )
9 foeq1 ( + = ( +𝑓𝐺 ) → ( + : ( 𝐵 × 𝐵 ) –onto𝐵 ↔ ( +𝑓𝐺 ) : ( 𝐵 × 𝐵 ) –onto𝐵 ) )
10 8 9 syl ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( + : ( 𝐵 × 𝐵 ) –onto𝐵 ↔ ( +𝑓𝐺 ) : ( 𝐵 × 𝐵 ) –onto𝐵 ) )
11 5 10 mpbird ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) –onto𝐵 )