| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndfo.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
mndfo.p |
⊢ + = ( +g ‘ 𝐺 ) |
| 3 |
|
eqid |
⊢ ( +𝑓 ‘ 𝐺 ) = ( +𝑓 ‘ 𝐺 ) |
| 4 |
1 3
|
mndpfo |
⊢ ( 𝐺 ∈ Mnd → ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |
| 5 |
4
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |
| 6 |
1 2 3
|
plusfeq |
⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( +𝑓 ‘ 𝐺 ) = + ) |
| 7 |
6
|
eqcomd |
⊢ ( + Fn ( 𝐵 × 𝐵 ) → + = ( +𝑓 ‘ 𝐺 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + = ( +𝑓 ‘ 𝐺 ) ) |
| 9 |
|
foeq1 |
⊢ ( + = ( +𝑓 ‘ 𝐺 ) → ( + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ↔ ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → ( + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ↔ ( +𝑓 ‘ 𝐺 ) : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) ) |
| 11 |
5 10
|
mpbird |
⊢ ( ( 𝐺 ∈ Mnd ∧ + Fn ( 𝐵 × 𝐵 ) ) → + : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |