Metamath Proof Explorer


Theorem mndidcl

Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)

Ref Expression
Hypotheses mndidcl.b 𝐵 = ( Base ‘ 𝐺 )
mndidcl.o 0 = ( 0g𝐺 )
Assertion mndidcl ( 𝐺 ∈ Mnd → 0𝐵 )

Proof

Step Hyp Ref Expression
1 mndidcl.b 𝐵 = ( Base ‘ 𝐺 )
2 mndidcl.o 0 = ( 0g𝐺 )
3 eqid ( +g𝐺 ) = ( +g𝐺 )
4 1 3 mndid ( 𝐺 ∈ Mnd → ∃ 𝑥𝐵𝑦𝐵 ( ( 𝑥 ( +g𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g𝐺 ) 𝑥 ) = 𝑦 ) )
5 1 2 3 4 mgmidcl ( 𝐺 ∈ Mnd → 0𝐵 )