Metamath Proof Explorer
Description: The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011) (Revised by Mario Carneiro, 27-Dec-2014)
|
|
Ref |
Expression |
|
Hypotheses |
mndidcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
mndidcl.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
|
Assertion |
mndidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mndidcl.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mndidcl.o |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
4 |
1 3
|
mndid |
⊢ ( 𝐺 ∈ Mnd → ∃ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 ( +g ‘ 𝐺 ) 𝑦 ) = 𝑦 ∧ ( 𝑦 ( +g ‘ 𝐺 ) 𝑥 ) = 𝑦 ) ) |
5 |
1 2 3 4
|
mgmidcl |
⊢ ( 𝐺 ∈ Mnd → 0 ∈ 𝐵 ) |