Metamath Proof Explorer


Theorem mndideu

Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by Mario Carneiro, 8-Dec-2014)

Ref Expression
Hypotheses mndcl.b 𝐵 = ( Base ‘ 𝐺 )
mndcl.p + = ( +g𝐺 )
Assertion mndideu ( 𝐺 ∈ Mnd → ∃! 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) )

Proof

Step Hyp Ref Expression
1 mndcl.b 𝐵 = ( Base ‘ 𝐺 )
2 mndcl.p + = ( +g𝐺 )
3 1 2 mndid ( 𝐺 ∈ Mnd → ∃ 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) )
4 mgmidmo ∃* 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 )
5 reu5 ( ∃! 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ↔ ( ∃ 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃* 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) )
6 3 4 5 sylanblrc ( 𝐺 ∈ Mnd → ∃! 𝑢𝐵𝑥𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) )