Description: The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of Herstein p. 55. (Contributed by Mario Carneiro, 8-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mndcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mndideu | ⊢ ( 𝐺 ∈ Mnd → ∃! 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mndcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mndcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 3 | 1 2 | mndid | ⊢ ( 𝐺 ∈ Mnd → ∃ 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) |
| 4 | mgmidmo | ⊢ ∃* 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) | |
| 5 | reu5 | ⊢ ( ∃! 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ↔ ( ∃ 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ∧ ∃* 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) ) | |
| 6 | 3 4 5 | sylanblrc | ⊢ ( 𝐺 ∈ Mnd → ∃! 𝑢 ∈ 𝐵 ∀ 𝑥 ∈ 𝐵 ( ( 𝑢 + 𝑥 ) = 𝑥 ∧ ( 𝑥 + 𝑢 ) = 𝑥 ) ) |