Step |
Hyp |
Ref |
Expression |
1 |
|
mndifsplit.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
mndifsplit.0g |
⊢ 0 = ( 0g ‘ 𝑀 ) |
3 |
|
mndifsplit.pg |
⊢ + = ( +g ‘ 𝑀 ) |
4 |
|
pm2.21 |
⊢ ( ¬ ( 𝜑 ∧ 𝜓 ) → ( ( 𝜑 ∧ 𝜓 ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) ) |
5 |
4
|
imp |
⊢ ( ( ¬ ( 𝜑 ∧ 𝜓 ) ∧ ( 𝜑 ∧ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
6 |
5
|
3ad2antl3 |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( 𝜑 ∧ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
7 |
1 3 2
|
mndrid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 + 0 ) = 𝐴 ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) → ( 𝐴 + 0 ) = 𝐴 ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) → ( 𝐴 + 0 ) = 𝐴 ) |
10 |
|
iftrue |
⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 0 ) = 𝐴 ) |
11 |
|
iffalse |
⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 0 ) = 0 ) |
12 |
10 11
|
oveqan12d |
⊢ ( ( 𝜑 ∧ ¬ 𝜓 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 𝐴 + 0 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 𝐴 + 0 ) ) |
14 |
|
iftrue |
⊢ ( ( 𝜑 ∨ 𝜓 ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 𝐴 ) |
15 |
14
|
orcs |
⊢ ( 𝜑 → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 𝐴 ) |
16 |
15
|
ad2antrl |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 𝐴 ) |
17 |
9 13 16
|
3eqtr4rd |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( 𝜑 ∧ ¬ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
18 |
1 3 2
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ) → ( 0 + 𝐴 ) = 𝐴 ) |
19 |
18
|
3adant3 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) → ( 0 + 𝐴 ) = 𝐴 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ 𝜓 ) ) → ( 0 + 𝐴 ) = 𝐴 ) |
21 |
|
iffalse |
⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 0 ) = 0 ) |
22 |
|
iftrue |
⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , 0 ) = 𝐴 ) |
23 |
21 22
|
oveqan12d |
⊢ ( ( ¬ 𝜑 ∧ 𝜓 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 0 + 𝐴 ) ) |
24 |
23
|
adantl |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ 𝜓 ) ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 0 + 𝐴 ) ) |
25 |
14
|
olcs |
⊢ ( 𝜓 → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 𝐴 ) |
26 |
25
|
ad2antll |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 𝐴 ) |
27 |
20 24 26
|
3eqtr4rd |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
28 |
|
simp1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) → 𝑀 ∈ Mnd ) |
29 |
1 2
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
30 |
1 3 2
|
mndlid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 0 ∈ 𝐵 ) → ( 0 + 0 ) = 0 ) |
31 |
28 29 30
|
syl2anc2 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) → ( 0 + 0 ) = 0 ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → ( 0 + 0 ) = 0 ) |
33 |
21 11
|
oveqan12d |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 0 + 0 ) ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) = ( 0 + 0 ) ) |
35 |
|
ioran |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) ↔ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) |
36 |
|
iffalse |
⊢ ( ¬ ( 𝜑 ∨ 𝜓 ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 0 ) |
37 |
35 36
|
sylbir |
⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 0 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = 0 ) |
39 |
32 34 38
|
3eqtr4rd |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) ∧ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |
40 |
6 17 27 39
|
4casesdan |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝐴 ∈ 𝐵 ∧ ¬ ( 𝜑 ∧ 𝜓 ) ) → if ( ( 𝜑 ∨ 𝜓 ) , 𝐴 , 0 ) = ( if ( 𝜑 , 𝐴 , 0 ) + if ( 𝜓 , 𝐴 , 0 ) ) ) |