Step |
Hyp |
Ref |
Expression |
1 |
|
odcl.1 |
⊢ 𝑋 = ( Base ‘ 𝐺 ) |
2 |
|
odcl.2 |
⊢ 𝑂 = ( od ‘ 𝐺 ) |
3 |
|
odid.3 |
⊢ · = ( .g ‘ 𝐺 ) |
4 |
|
odid.4 |
⊢ 0 = ( 0g ‘ 𝐺 ) |
5 |
|
oveq1 |
⊢ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
6 |
|
simp2l |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑀 ∈ ℕ0 ) |
7 |
6
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑀 ∈ ℤ ) |
8 |
|
simp3 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
9 |
7 8
|
zmodcld |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
10 |
9
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
11 |
10
|
nn0red |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
12 |
|
simp2r |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
13 |
12
|
nn0zd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℤ ) |
14 |
13 8
|
zmodcld |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
15 |
14
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℕ0 ) |
16 |
15
|
nn0red |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ∈ ℝ ) |
17 |
|
simp1l |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐺 ∈ Mnd ) |
18 |
17
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → 𝐺 ∈ Mnd ) |
19 |
|
simp1r |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝐴 ∈ 𝑋 ) |
20 |
19
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → 𝐴 ∈ 𝑋 ) |
21 |
8
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) |
22 |
6
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑀 ∈ ℝ ) |
23 |
8
|
nnrpd |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) |
24 |
|
modlt |
⊢ ( ( 𝑀 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
25 |
22 23 24
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
27 |
12
|
nn0red |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → 𝑁 ∈ ℝ ) |
28 |
|
modlt |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℝ+ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
29 |
27 23 28
|
syl2anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
30 |
29
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) < ( 𝑂 ‘ 𝐴 ) ) |
31 |
|
simpr |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
32 |
1 2 3 4 18 20 21 10 15 26 30 31
|
mndodconglem |
⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ∧ ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ≤ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
33 |
31
|
eqcomd |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) |
34 |
1 2 3 4 18 20 21 15 10 30 26 33
|
mndodconglem |
⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ≤ ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ) |
35 |
34
|
eqcomd |
⊢ ( ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ∧ ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ≤ ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
36 |
11 16 32 35
|
lecasei |
⊢ ( ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) ∧ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) |
37 |
36
|
ex |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) → ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ) ) |
38 |
5 37
|
impbid2 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ↔ ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ) ) |
39 |
|
moddvds |
⊢ ( ( ( 𝑂 ‘ 𝐴 ) ∈ ℕ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ) ) |
40 |
8 7 13 39
|
syl3anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) = ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) ↔ ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ) ) |
41 |
1 2 3 4
|
odmodnn0 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑀 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑀 · 𝐴 ) ) |
42 |
17 19 6 8 41
|
syl31anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑀 · 𝐴 ) ) |
43 |
1 2 3 4
|
odmodnn0 |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
44 |
17 19 12 8 43
|
syl31anc |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( 𝑁 · 𝐴 ) ) |
45 |
42 44
|
eqeq12d |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( ( 𝑀 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) = ( ( 𝑁 mod ( 𝑂 ‘ 𝐴 ) ) · 𝐴 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |
46 |
38 40 45
|
3bitr3d |
⊢ ( ( ( 𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑂 ‘ 𝐴 ) ∈ ℕ ) → ( ( 𝑂 ‘ 𝐴 ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) ) |