| Step | Hyp | Ref | Expression | 
						
							| 1 |  | odcl.1 | ⊢ 𝑋  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | odcl.2 | ⊢ 𝑂  =  ( od ‘ 𝐺 ) | 
						
							| 3 |  | odid.3 | ⊢  ·   =  ( .g ‘ 𝐺 ) | 
						
							| 4 |  | odid.4 | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 5 |  | mndodconglem.1 | ⊢ ( 𝜑  →  𝐺  ∈  Mnd ) | 
						
							| 6 |  | mndodconglem.2 | ⊢ ( 𝜑  →  𝐴  ∈  𝑋 ) | 
						
							| 7 |  | mndodconglem.3 | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 8 |  | mndodconglem.4 | ⊢ ( 𝜑  →  𝑀  ∈  ℕ0 ) | 
						
							| 9 |  | mndodconglem.5 | ⊢ ( 𝜑  →  𝑁  ∈  ℕ0 ) | 
						
							| 10 |  | mndodconglem.6 | ⊢ ( 𝜑  →  𝑀  <  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 11 |  | mndodconglem.7 | ⊢ ( 𝜑  →  𝑁  <  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 12 |  | mndodconglem.8 | ⊢ ( 𝜑  →  ( 𝑀  ·  𝐴 )  =  ( 𝑁  ·  𝐴 ) ) | 
						
							| 13 | 7 | nnred | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 14 | 13 | recnd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 15 | 8 | nn0red | ⊢ ( 𝜑  →  𝑀  ∈  ℝ ) | 
						
							| 16 | 15 | recnd | ⊢ ( 𝜑  →  𝑀  ∈  ℂ ) | 
						
							| 17 | 9 | nn0red | ⊢ ( 𝜑  →  𝑁  ∈  ℝ ) | 
						
							| 18 | 17 | recnd | ⊢ ( 𝜑  →  𝑁  ∈  ℂ ) | 
						
							| 19 | 14 16 18 | addsubassd | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  −  𝑁 )  =  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) ) | 
						
							| 20 | 7 | nnzd | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 21 | 8 | nn0zd | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 22 | 20 21 | zaddcld | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  ∈  ℤ ) | 
						
							| 23 | 22 | zred | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  ∈  ℝ ) | 
						
							| 24 |  | nn0addge1 | ⊢ ( ( ( 𝑂 ‘ 𝐴 )  ∈  ℝ  ∧  𝑀  ∈  ℕ0 )  →  ( 𝑂 ‘ 𝐴 )  ≤  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 ) ) | 
						
							| 25 | 13 8 24 | syl2anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ≤  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 ) ) | 
						
							| 26 | 17 13 23 11 25 | ltletrd | ⊢ ( 𝜑  →  𝑁  <  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 ) ) | 
						
							| 27 | 9 | nn0zd | ⊢ ( 𝜑  →  𝑁  ∈  ℤ ) | 
						
							| 28 |  | znnsub | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  ∈  ℤ )  →  ( 𝑁  <  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  ↔  ( ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  −  𝑁 )  ∈  ℕ ) ) | 
						
							| 29 | 27 22 28 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  <  ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  ↔  ( ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  −  𝑁 )  ∈  ℕ ) ) | 
						
							| 30 | 26 29 | mpbid | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  +  𝑀 )  −  𝑁 )  ∈  ℕ ) | 
						
							| 31 | 19 30 | eqeltrrd | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) )  ∈  ℕ ) | 
						
							| 32 | 14 16 18 | addsub12d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) )  =  ( 𝑀  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) ) ) | 
						
							| 33 | 32 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑀  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 ) ) | 
						
							| 34 | 12 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑀  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ·  𝐴 ) )  =  ( ( 𝑁  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ·  𝐴 ) ) ) | 
						
							| 35 |  | znnsub | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( 𝑂 ‘ 𝐴 )  ∈  ℤ )  →  ( 𝑁  <  ( 𝑂 ‘ 𝐴 )  ↔  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ∈  ℕ ) ) | 
						
							| 36 | 27 20 35 | syl2anc | ⊢ ( 𝜑  →  ( 𝑁  <  ( 𝑂 ‘ 𝐴 )  ↔  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ∈  ℕ ) ) | 
						
							| 37 | 11 36 | mpbid | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ∈  ℕ ) | 
						
							| 38 | 37 | nnnn0d | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ∈  ℕ0 ) | 
						
							| 39 |  | eqid | ⊢ ( +g ‘ 𝐺 )  =  ( +g ‘ 𝐺 ) | 
						
							| 40 | 1 3 39 | mulgnn0dir | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑀  ∈  ℕ0  ∧  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ∈  ℕ0  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑀  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑀  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ·  𝐴 ) ) ) | 
						
							| 41 | 5 8 38 6 40 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑀  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑀  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ·  𝐴 ) ) ) | 
						
							| 42 | 1 3 39 | mulgnn0dir | ⊢ ( ( 𝐺  ∈  Mnd  ∧  ( 𝑁  ∈  ℕ0  ∧  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ∈  ℕ0  ∧  𝐴  ∈  𝑋 ) )  →  ( ( 𝑁  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑁  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ·  𝐴 ) ) ) | 
						
							| 43 | 5 9 38 6 42 | syl13anc | ⊢ ( 𝜑  →  ( ( 𝑁  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑁  ·  𝐴 ) ( +g ‘ 𝐺 ) ( ( ( 𝑂 ‘ 𝐴 )  −  𝑁 )  ·  𝐴 ) ) ) | 
						
							| 44 | 34 41 43 | 3eqtr4d | ⊢ ( 𝜑  →  ( ( 𝑀  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑁  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 ) ) | 
						
							| 45 | 18 14 | pncan3d | ⊢ ( 𝜑  →  ( 𝑁  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  =  ( 𝑂 ‘ 𝐴 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝑁  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 ) ) | 
						
							| 47 | 1 2 3 4 | odid | ⊢ ( 𝐴  ∈  𝑋  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 48 | 6 47 | syl | ⊢ ( 𝜑  →  ( ( 𝑂 ‘ 𝐴 )  ·  𝐴 )  =   0  ) | 
						
							| 49 | 46 48 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑁  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =   0  ) | 
						
							| 50 | 44 49 | eqtrd | ⊢ ( 𝜑  →  ( ( 𝑀  +  ( ( 𝑂 ‘ 𝐴 )  −  𝑁 ) )  ·  𝐴 )  =   0  ) | 
						
							| 51 | 33 50 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) )  ·  𝐴 )  =   0  ) | 
						
							| 52 | 1 2 3 4 | odlem2 | ⊢ ( ( 𝐴  ∈  𝑋  ∧  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) )  ∈  ℕ  ∧  ( ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) )  ·  𝐴 )  =   0  )  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) ) ) | 
						
							| 53 | 6 31 51 52 | syl3anc | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) ) ) | 
						
							| 54 |  | elfzle2 | ⊢ ( ( 𝑂 ‘ 𝐴 )  ∈  ( 1 ... ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) )  →  ( 𝑂 ‘ 𝐴 )  ≤  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) ) | 
						
							| 55 | 53 54 | syl | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐴 )  ≤  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) ) | 
						
							| 56 | 21 27 | zsubcld | ⊢ ( 𝜑  →  ( 𝑀  −  𝑁 )  ∈  ℤ ) | 
						
							| 57 | 56 | zred | ⊢ ( 𝜑  →  ( 𝑀  −  𝑁 )  ∈  ℝ ) | 
						
							| 58 | 13 57 | addge01d | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑀  −  𝑁 )  ↔  ( 𝑂 ‘ 𝐴 )  ≤  ( ( 𝑂 ‘ 𝐴 )  +  ( 𝑀  −  𝑁 ) ) ) ) | 
						
							| 59 | 55 58 | mpbird | ⊢ ( 𝜑  →  0  ≤  ( 𝑀  −  𝑁 ) ) | 
						
							| 60 | 15 17 | subge0d | ⊢ ( 𝜑  →  ( 0  ≤  ( 𝑀  −  𝑁 )  ↔  𝑁  ≤  𝑀 ) ) | 
						
							| 61 | 59 60 | mpbid | ⊢ ( 𝜑  →  𝑁  ≤  𝑀 ) | 
						
							| 62 | 15 17 | letri3d | ⊢ ( 𝜑  →  ( 𝑀  =  𝑁  ↔  ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 ) ) ) | 
						
							| 63 | 62 | biimprd | ⊢ ( 𝜑  →  ( ( 𝑀  ≤  𝑁  ∧  𝑁  ≤  𝑀 )  →  𝑀  =  𝑁 ) ) | 
						
							| 64 | 61 63 | mpan2d | ⊢ ( 𝜑  →  ( 𝑀  ≤  𝑁  →  𝑀  =  𝑁 ) ) | 
						
							| 65 | 64 | imp | ⊢ ( ( 𝜑  ∧  𝑀  ≤  𝑁 )  →  𝑀  =  𝑁 ) |