Metamath Proof Explorer


Theorem mndoisexid

Description: A monoid has an identity element. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.)

Ref Expression
Assertion mndoisexid ( 𝐺 ∈ MndOp → 𝐺 ∈ ExId )

Proof

Step Hyp Ref Expression
1 elinel2 ( 𝐺 ∈ ( SemiGrp ∩ ExId ) → 𝐺 ∈ ExId )
2 df-mndo MndOp = ( SemiGrp ∩ ExId )
3 1 2 eleq2s ( 𝐺 ∈ MndOp → 𝐺 ∈ ExId )