Metamath Proof Explorer


Theorem mndoissmgrpOLD

Description: Obsolete version of mndsgrp as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion mndoissmgrpOLD ( 𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp )

Proof

Step Hyp Ref Expression
1 elin ( 𝐺 ∈ ( SemiGrp ∩ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) )
2 1 simplbi ( 𝐺 ∈ ( SemiGrp ∩ ExId ) → 𝐺 ∈ SemiGrp )
3 df-mndo MndOp = ( SemiGrp ∩ ExId )
4 2 3 eleq2s ( 𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp )