Metamath Proof Explorer


Theorem mndomgmid

Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010) (New usage is discouraged.)

Ref Expression
Assertion mndomgmid ( 𝐺 ∈ MndOp → 𝐺 ∈ ( Magma ∩ ExId ) )

Proof

Step Hyp Ref Expression
1 mndoismgmOLD ( 𝐺 ∈ MndOp → 𝐺 ∈ Magma )
2 mndoisexid ( 𝐺 ∈ MndOp → 𝐺 ∈ ExId )
3 1 2 elind ( 𝐺 ∈ MndOp → 𝐺 ∈ ( Magma ∩ ExId ) )