Step |
Hyp |
Ref |
Expression |
1 |
|
mndpf.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mndpf.p |
⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) |
3 |
1 2
|
mndplusf |
⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
4 |
|
simpr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
5 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
6 |
1 5
|
mndidcl |
⊢ ( 𝐺 ∈ Mnd → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
7 |
6
|
adantr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 0g ‘ 𝐺 ) ∈ 𝐵 ) |
8 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
9 |
1 8 5
|
mndrid |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) = 𝑥 ) |
10 |
9
|
eqcomd |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → 𝑥 = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
11 |
|
rspceov |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ ( 0g ‘ 𝐺 ) ∈ 𝐵 ∧ 𝑥 = ( 𝑥 ( +g ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
12 |
4 7 10 11
|
syl3anc |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
13 |
1 8 2
|
plusfval |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑦 ⨣ 𝑧 ) = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
14 |
13
|
eqeq2d |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝑥 = ( 𝑦 ⨣ 𝑧 ) ↔ 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) ) |
15 |
14
|
2rexbiia |
⊢ ( ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ↔ ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ( +g ‘ 𝐺 ) 𝑧 ) ) |
16 |
12 15
|
sylibr |
⊢ ( ( 𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ) |
17 |
16
|
ralrimiva |
⊢ ( 𝐺 ∈ Mnd → ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ) |
18 |
|
foov |
⊢ ( ⨣ : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ↔ ( ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 ∃ 𝑧 ∈ 𝐵 𝑥 = ( 𝑦 ⨣ 𝑧 ) ) ) |
19 |
3 17 18
|
sylanbrc |
⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) –onto→ 𝐵 ) |