Metamath Proof Explorer


Theorem mndplusf

Description: The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)

Ref Expression
Hypotheses mndplusf.1 𝐵 = ( Base ‘ 𝐺 )
mndplusf.2 = ( +𝑓𝐺 )
Assertion mndplusf ( 𝐺 ∈ Mnd → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )

Proof

Step Hyp Ref Expression
1 mndplusf.1 𝐵 = ( Base ‘ 𝐺 )
2 mndplusf.2 = ( +𝑓𝐺 )
3 mndmgm ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm )
4 1 2 mgmplusf ( 𝐺 ∈ Mgm → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )
5 3 4 syl ( 𝐺 ∈ Mnd → : ( 𝐵 × 𝐵 ) ⟶ 𝐵 )