Metamath Proof Explorer
		
		
		
		Description:  The group addition operation is a function.  (Contributed by Mario
       Carneiro, 14-Aug-2015)  (Proof shortened by AV, 3-Feb-2020)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | mndplusf.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
					
						|  |  | mndplusf.2 | ⊢  ⨣   =  ( +𝑓 ‘ 𝐺 ) | 
				
					|  | Assertion | mndplusf | ⊢  ( 𝐺  ∈  Mnd  →   ⨣  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndplusf.1 | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | mndplusf.2 | ⊢  ⨣   =  ( +𝑓 ‘ 𝐺 ) | 
						
							| 3 |  | mndmgm | ⊢ ( 𝐺  ∈  Mnd  →  𝐺  ∈  Mgm ) | 
						
							| 4 | 1 2 | mgmplusf | ⊢ ( 𝐺  ∈  Mgm  →   ⨣  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝐺  ∈  Mnd  →   ⨣  : ( 𝐵  ×  𝐵 ) ⟶ 𝐵 ) |