Metamath Proof Explorer
Description: The group addition operation is a function. (Contributed by Mario
Carneiro, 14-Aug-2015) (Proof shortened by AV, 3-Feb-2020)
|
|
Ref |
Expression |
|
Hypotheses |
mndplusf.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
|
|
mndplusf.2 |
⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) |
|
Assertion |
mndplusf |
⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mndplusf.1 |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
mndplusf.2 |
⊢ ⨣ = ( +𝑓 ‘ 𝐺 ) |
3 |
|
mndmgm |
⊢ ( 𝐺 ∈ Mnd → 𝐺 ∈ Mgm ) |
4 |
1 2
|
mgmplusf |
⊢ ( 𝐺 ∈ Mgm → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |
5 |
3 4
|
syl |
⊢ ( 𝐺 ∈ Mnd → ⨣ : ( 𝐵 × 𝐵 ) ⟶ 𝐵 ) |