Description: If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mndprop.b | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) | |
| mndprop.p | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) | ||
| Assertion | mndprop | ⊢ ( 𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mndprop.b | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) | |
| 2 | mndprop.p | ⊢ ( +g ‘ 𝐾 ) = ( +g ‘ 𝐿 ) | |
| 3 | eqidd | ⊢ ( ⊤ → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) ) | |
| 4 | 1 | a1i | ⊢ ( ⊤ → ( Base ‘ 𝐾 ) = ( Base ‘ 𝐿 ) ) | 
| 5 | 2 | oveqi | ⊢ ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) | 
| 6 | 5 | a1i | ⊢ ( ( ⊤ ∧ ( 𝑥 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) ) → ( 𝑥 ( +g ‘ 𝐾 ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝐿 ) 𝑦 ) ) | 
| 7 | 3 4 6 | mndpropd | ⊢ ( ⊤ → ( 𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd ) ) | 
| 8 | 7 | mptru | ⊢ ( 𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd ) |