Metamath Proof Explorer


Theorem mndsgrp

Description: A monoid is a semigroup. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020) (Proof shortened by AV, 6-Feb-2020)

Ref Expression
Assertion mndsgrp ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
2 eqid ( +g𝐺 ) = ( +g𝐺 )
3 1 2 ismnddef ( 𝐺 ∈ Mnd ↔ ( 𝐺 ∈ Smgrp ∧ ∃ 𝑒 ∈ ( Base ‘ 𝐺 ) ∀ 𝑥 ∈ ( Base ‘ 𝐺 ) ( ( 𝑒 ( +g𝐺 ) 𝑥 ) = 𝑥 ∧ ( 𝑥 ( +g𝐺 ) 𝑒 ) = 𝑥 ) ) )
4 3 simplbi ( 𝐺 ∈ Mnd → 𝐺 ∈ Smgrp )