Metamath Proof Explorer


Theorem mndtcbas

Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
Assertion mndtcbas ( 𝜑 → ∃! 𝑥 𝑥𝐵 )

Proof

Step Hyp Ref Expression
1 mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 1 2 3 mndtcbasval ( 𝜑𝐵 = { 𝑀 } )
5 sneq ( 𝑥 = 𝑀 → { 𝑥 } = { 𝑀 } )
6 5 eqeq2d ( 𝑥 = 𝑀 → ( 𝐵 = { 𝑥 } ↔ 𝐵 = { 𝑀 } ) )
7 2 4 6 spcedv ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } )
8 eusn ( ∃! 𝑥 𝑥𝐵 ↔ ∃ 𝑥 𝐵 = { 𝑥 } )
9 7 8 sylibr ( 𝜑 → ∃! 𝑥 𝑥𝐵 )