Description: The category built from a monoid contains precisely one object. (Contributed by Zhi Wang, 22-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
Assertion | mndtcbas | ⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
2 | mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
3 | mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
4 | 1 2 3 | mndtcbasval | ⊢ ( 𝜑 → 𝐵 = { 𝑀 } ) |
5 | sneq | ⊢ ( 𝑥 = 𝑀 → { 𝑥 } = { 𝑀 } ) | |
6 | 5 | eqeq2d | ⊢ ( 𝑥 = 𝑀 → ( 𝐵 = { 𝑥 } ↔ 𝐵 = { 𝑀 } ) ) |
7 | 2 4 6 | spcedv | ⊢ ( 𝜑 → ∃ 𝑥 𝐵 = { 𝑥 } ) |
8 | eusn | ⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 ↔ ∃ 𝑥 𝐵 = { 𝑥 } ) | |
9 | 7 8 | sylibr | ⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |