Step |
Hyp |
Ref |
Expression |
1 |
|
mndtcbas.c |
⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
2 |
|
mndtcbas.m |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
3 |
|
mndtcbas.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
4 |
|
mndtchom.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
mndtchom.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
6 |
1 2 3
|
mndtcbas |
⊢ ( 𝜑 → ∃! 𝑥 𝑥 ∈ 𝐵 ) |
7 |
|
eumo |
⊢ ( ∃! 𝑥 𝑥 ∈ 𝐵 → ∃* 𝑥 𝑥 ∈ 𝐵 ) |
8 |
|
moel |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
9 |
8
|
biimpi |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐵 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
10 |
6 7 9
|
3syl |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 ) |
11 |
|
eqeq12 |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑥 = 𝑦 ↔ 𝑋 = 𝑌 ) ) |
12 |
11
|
rspc2gv |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌 ) ) |
13 |
4 5 12
|
syl2anc |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝑥 = 𝑦 → 𝑋 = 𝑌 ) ) |
14 |
10 13
|
mpd |
⊢ ( 𝜑 → 𝑋 = 𝑌 ) |