Metamath Proof Explorer


Theorem mndtcbas2

Description: Two objects in a category built from a monoid are identical. (Contributed by Zhi Wang, 24-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
mndtchom.x ( 𝜑𝑋𝐵 )
mndtchom.y ( 𝜑𝑌𝐵 )
Assertion mndtcbas2 ( 𝜑𝑋 = 𝑌 )

Proof

Step Hyp Ref Expression
1 mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 mndtchom.x ( 𝜑𝑋𝐵 )
5 mndtchom.y ( 𝜑𝑌𝐵 )
6 1 2 3 mndtcbas ( 𝜑 → ∃! 𝑥 𝑥𝐵 )
7 eumo ( ∃! 𝑥 𝑥𝐵 → ∃* 𝑥 𝑥𝐵 )
8 moel ( ∃* 𝑥 𝑥𝐵 ↔ ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦 )
9 8 biimpi ( ∃* 𝑥 𝑥𝐵 → ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦 )
10 6 7 9 3syl ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦 )
11 eqeq12 ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑥 = 𝑦𝑋 = 𝑌 ) )
12 11 rspc2gv ( ( 𝑋𝐵𝑌𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦𝑋 = 𝑌 ) )
13 4 5 12 syl2anc ( 𝜑 → ( ∀ 𝑥𝐵𝑦𝐵 𝑥 = 𝑦𝑋 = 𝑌 ) )
14 10 13 mpd ( 𝜑𝑋 = 𝑌 )