Metamath Proof Explorer


Theorem mndtcbasval

Description: The base set of the category built from a monoid. (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
Assertion mndtcbasval ( 𝜑𝐵 = { 𝑀 } )

Proof

Step Hyp Ref Expression
1 mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 1 2 mndtcval ( 𝜑𝐶 = { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } )
5 4 fveq2d ( 𝜑 → ( Base ‘ 𝐶 ) = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } ) )
6 snex { 𝑀 } ∈ V
7 catstr { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } Struct ⟨ 1 , 1 5 ⟩
8 baseid Base = Slot ( Base ‘ ndx )
9 snsstp1 { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ } ⊆ { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ }
10 7 8 9 strfv ( { 𝑀 } ∈ V → { 𝑀 } = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } ) )
11 6 10 mp1i ( 𝜑 → { 𝑀 } = ( Base ‘ { ⟨ ( Base ‘ ndx ) , { 𝑀 } ⟩ , ⟨ ( Hom ‘ ndx ) , { ⟨ 𝑀 , 𝑀 , ( Base ‘ 𝑀 ) ⟩ } ⟩ , ⟨ ( comp ‘ ndx ) , { ⟨ ⟨ 𝑀 , 𝑀 , 𝑀 ⟩ , ( +g𝑀 ) ⟩ } ⟩ } ) )
12 5 3 11 3eqtr4d ( 𝜑𝐵 = { 𝑀 } )