Metamath Proof Explorer


Theorem mndtccat

Description: The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtccat.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtccat.m ( 𝜑𝑀 ∈ Mnd )
Assertion mndtccat ( 𝜑𝐶 ∈ Cat )

Proof

Step Hyp Ref Expression
1 mndtccat.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtccat.m ( 𝜑𝑀 ∈ Mnd )
3 1 2 mndtccatid ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g𝑀 ) ) ) )
4 3 simpld ( 𝜑𝐶 ∈ Cat )