Metamath Proof Explorer
Description: The function value is a category. (Contributed by Zhi Wang, 22-Sep-2024)
|
|
Ref |
Expression |
|
Hypotheses |
mndtccat.c |
⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
|
|
mndtccat.m |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
|
Assertion |
mndtccat |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
mndtccat.c |
⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
2 |
|
mndtccat.m |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
3 |
1 2
|
mndtccatid |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑦 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) ) |
4 |
3
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ Cat ) |