Metamath Proof Explorer


Theorem mndtcco2

Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
mndtchom.x ( 𝜑𝑋𝐵 )
mndtchom.y ( 𝜑𝑌𝐵 )
mndtcco.z ( 𝜑𝑍𝐵 )
mndtcco.o ( 𝜑· = ( comp ‘ 𝐶 ) )
mndtcco2.o2 ( 𝜑 = ( ⟨ 𝑋 , 𝑌· 𝑍 ) )
Assertion mndtcco2 ( 𝜑 → ( 𝐺 𝐹 ) = ( 𝐺 ( +g𝑀 ) 𝐹 ) )

Proof

Step Hyp Ref Expression
1 mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 mndtchom.x ( 𝜑𝑋𝐵 )
5 mndtchom.y ( 𝜑𝑌𝐵 )
6 mndtcco.z ( 𝜑𝑍𝐵 )
7 mndtcco.o ( 𝜑· = ( comp ‘ 𝐶 ) )
8 mndtcco2.o2 ( 𝜑 = ( ⟨ 𝑋 , 𝑌· 𝑍 ) )
9 1 2 3 4 5 6 7 mndtcco ( 𝜑 → ( ⟨ 𝑋 , 𝑌· 𝑍 ) = ( +g𝑀 ) )
10 8 9 eqtrd ( 𝜑 = ( +g𝑀 ) )
11 10 oveqd ( 𝜑 → ( 𝐺 𝐹 ) = ( 𝐺 ( +g𝑀 ) 𝐹 ) )