Description: The composition of the category built from a monoid is the monoid operation. (Contributed by Zhi Wang, 22-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
mndtchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
mndtchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
mndtcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
mndtcco.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) | ||
mndtcco2.o2 | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) | ||
Assertion | mndtcco2 | ⊢ ( 𝜑 → ( 𝐺 ⚬ 𝐹 ) = ( 𝐺 ( +g ‘ 𝑀 ) 𝐹 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
2 | mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
3 | mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
4 | mndtchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
5 | mndtchom.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
6 | mndtcco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
7 | mndtcco.o | ⊢ ( 𝜑 → · = ( comp ‘ 𝐶 ) ) | |
8 | mndtcco2.o2 | ⊢ ( 𝜑 → ⚬ = ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) ) | |
9 | 1 2 3 4 5 6 7 | mndtcco | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) = ( +g ‘ 𝑀 ) ) |
10 | 8 9 | eqtrd | ⊢ ( 𝜑 → ⚬ = ( +g ‘ 𝑀 ) ) |
11 | 10 | oveqd | ⊢ ( 𝜑 → ( 𝐺 ⚬ 𝐹 ) = ( 𝐺 ( +g ‘ 𝑀 ) 𝐹 ) ) |