Step |
Hyp |
Ref |
Expression |
1 |
|
mndtccat.c |
⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) |
2 |
|
mndtccat.m |
⊢ ( 𝜑 → 𝑀 ∈ Mnd ) |
3 |
|
mndtcid.b |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) |
4 |
|
mndtcid.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
mndtcid.i |
⊢ ( 𝜑 → 1 = ( Id ‘ 𝐶 ) ) |
6 |
1 2
|
mndtccatid |
⊢ ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) ) |
7 |
6
|
simprd |
⊢ ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) |
8 |
5 7
|
eqtrd |
⊢ ( 𝜑 → 1 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g ‘ 𝑀 ) ) ) |
9 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) ) |
10 |
4 3
|
eleqtrd |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) |
11 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ V ) |
12 |
8 9 10 11
|
fvmptd |
⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( 0g ‘ 𝑀 ) ) |