Metamath Proof Explorer


Theorem mndtcid

Description: The identity morphism, or identity arrow, of the category built from a monoid is the identity element of the monoid. (Contributed by Zhi Wang, 22-Sep-2024)

Ref Expression
Hypotheses mndtccat.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtccat.m ( 𝜑𝑀 ∈ Mnd )
mndtcid.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
mndtcid.x ( 𝜑𝑋𝐵 )
mndtcid.i ( 𝜑1 = ( Id ‘ 𝐶 ) )
Assertion mndtcid ( 𝜑 → ( 1𝑋 ) = ( 0g𝑀 ) )

Proof

Step Hyp Ref Expression
1 mndtccat.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtccat.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcid.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 mndtcid.x ( 𝜑𝑋𝐵 )
5 mndtcid.i ( 𝜑1 = ( Id ‘ 𝐶 ) )
6 1 2 mndtccatid ( 𝜑 → ( 𝐶 ∈ Cat ∧ ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g𝑀 ) ) ) )
7 6 simprd ( 𝜑 → ( Id ‘ 𝐶 ) = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g𝑀 ) ) )
8 5 7 eqtrd ( 𝜑1 = ( 𝑥 ∈ ( Base ‘ 𝐶 ) ↦ ( 0g𝑀 ) ) )
9 eqidd ( ( 𝜑𝑥 = 𝑋 ) → ( 0g𝑀 ) = ( 0g𝑀 ) )
10 4 3 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ 𝐶 ) )
11 fvexd ( 𝜑 → ( 0g𝑀 ) ∈ V )
12 8 9 10 11 fvmptd ( 𝜑 → ( 1𝑋 ) = ( 0g𝑀 ) )