Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | ||
mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | ||
mndtchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
Assertion | mndtcob | ⊢ ( 𝜑 → 𝑋 = 𝑀 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndtcbas.c | ⊢ ( 𝜑 → 𝐶 = ( MndToCat ‘ 𝑀 ) ) | |
2 | mndtcbas.m | ⊢ ( 𝜑 → 𝑀 ∈ Mnd ) | |
3 | mndtcbas.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐶 ) ) | |
4 | mndtchom.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
5 | 1 2 3 | mndtcbasval | ⊢ ( 𝜑 → 𝐵 = { 𝑀 } ) |
6 | 4 5 | eleqtrd | ⊢ ( 𝜑 → 𝑋 ∈ { 𝑀 } ) |
7 | elsng | ⊢ ( 𝑋 ∈ 𝐵 → ( 𝑋 ∈ { 𝑀 } ↔ 𝑋 = 𝑀 ) ) | |
8 | 4 7 | syl | ⊢ ( 𝜑 → ( 𝑋 ∈ { 𝑀 } ↔ 𝑋 = 𝑀 ) ) |
9 | 6 8 | mpbid | ⊢ ( 𝜑 → 𝑋 = 𝑀 ) |