Metamath Proof Explorer


Theorem mndtcob

Description: Lemma for mndtchom and mndtcco . (Contributed by Zhi Wang, 22-Sep-2024) (New usage is discouraged.)

Ref Expression
Hypotheses mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
mndtchom.x ( 𝜑𝑋𝐵 )
Assertion mndtcob ( 𝜑𝑋 = 𝑀 )

Proof

Step Hyp Ref Expression
1 mndtcbas.c ( 𝜑𝐶 = ( MndToCat ‘ 𝑀 ) )
2 mndtcbas.m ( 𝜑𝑀 ∈ Mnd )
3 mndtcbas.b ( 𝜑𝐵 = ( Base ‘ 𝐶 ) )
4 mndtchom.x ( 𝜑𝑋𝐵 )
5 1 2 3 mndtcbasval ( 𝜑𝐵 = { 𝑀 } )
6 4 5 eleqtrd ( 𝜑𝑋 ∈ { 𝑀 } )
7 elsng ( 𝑋𝐵 → ( 𝑋 ∈ { 𝑀 } ↔ 𝑋 = 𝑀 ) )
8 4 7 syl ( 𝜑 → ( 𝑋 ∈ { 𝑀 } ↔ 𝑋 = 𝑀 ) )
9 6 8 mpbid ( 𝜑𝑋 = 𝑀 )