| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndvcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | mndvcl.p | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 3 |  | elmapex | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  →  ( 𝐵  ∈  V  ∧  𝐼  ∈  V ) ) | 
						
							| 4 | 3 | simprd | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝐼  ∈  V ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) ) )  →  𝐼  ∈  V ) | 
						
							| 7 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  →  𝑋 : 𝐼 ⟶ 𝐵 ) | 
						
							| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝑋 : 𝐼 ⟶ 𝐵 ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) ) )  →  𝑋 : 𝐼 ⟶ 𝐵 ) | 
						
							| 10 |  | elmapi | ⊢ ( 𝑌  ∈  ( 𝐵  ↑m  𝐼 )  →  𝑌 : 𝐼 ⟶ 𝐵 ) | 
						
							| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝑌 : 𝐼 ⟶ 𝐵 ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) ) )  →  𝑌 : 𝐼 ⟶ 𝐵 ) | 
						
							| 13 |  | elmapi | ⊢ ( 𝑍  ∈  ( 𝐵  ↑m  𝐼 )  →  𝑍 : 𝐼 ⟶ 𝐵 ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝑍 : 𝐼 ⟶ 𝐵 ) | 
						
							| 15 | 14 | adantl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) ) )  →  𝑍 : 𝐼 ⟶ 𝐵 ) | 
						
							| 16 | 1 2 | mndass | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 17 | 16 | adantlr | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵  ∧  𝑧  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  +  𝑧 )  =  ( 𝑥  +  ( 𝑦  +  𝑧 ) ) ) | 
						
							| 18 | 6 9 12 15 17 | caofass | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑍  ∈  ( 𝐵  ↑m  𝐼 ) ) )  →  ( ( 𝑋  ∘f   +  𝑌 )  ∘f   +  𝑍 )  =  ( 𝑋  ∘f   +  ( 𝑌  ∘f   +  𝑍 ) ) ) |