Step |
Hyp |
Ref |
Expression |
1 |
|
mndvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
mndvcl.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
elmapex |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) |
4 |
3
|
simprd |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
6 |
5
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝐼 ∈ V ) |
7 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
9 |
8
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
10 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
11 |
10
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
12 |
11
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
13 |
|
elmapi |
⊢ ( 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑍 : 𝐼 ⟶ 𝐵 ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑍 : 𝐼 ⟶ 𝐵 ) |
15 |
14
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → 𝑍 : 𝐼 ⟶ 𝐵 ) |
16 |
1 2
|
mndass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
17 |
16
|
adantlr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) + 𝑧 ) = ( 𝑥 + ( 𝑦 + 𝑧 ) ) ) |
18 |
6 9 12 15 17
|
caofass |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑍 ∈ ( 𝐵 ↑m 𝐼 ) ) ) → ( ( 𝑋 ∘f + 𝑌 ) ∘f + 𝑍 ) = ( 𝑋 ∘f + ( 𝑌 ∘f + 𝑍 ) ) ) |