Step |
Hyp |
Ref |
Expression |
1 |
|
mndvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
mndvcl.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
1 2
|
mndcl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
4 |
3
|
3expb |
⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
5 |
4
|
3ad2antl1 |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝐵 ) |
6 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
7 |
6
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
8 |
|
elmapi |
⊢ ( 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
9 |
8
|
3ad2ant3 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑌 : 𝐼 ⟶ 𝐵 ) |
10 |
|
elmapex |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) |
11 |
10
|
simprd |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
13 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
14 |
5 7 9 12 12 13
|
off |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) : 𝐼 ⟶ 𝐵 ) |
15 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
16 |
|
elmapg |
⊢ ( ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) → ( ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝑋 ∘f + 𝑌 ) : 𝐼 ⟶ 𝐵 ) ) |
17 |
15 12 16
|
sylancr |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ↔ ( 𝑋 ∘f + 𝑌 ) : 𝐼 ⟶ 𝐵 ) ) |
18 |
14 17
|
mpbird |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ∧ 𝑌 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + 𝑌 ) ∈ ( 𝐵 ↑m 𝐼 ) ) |