| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mndvcl.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | mndvcl.p | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 3 | 1 2 | mndcl | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 4 | 3 | 3expb | ⊢ ( ( 𝑀  ∈  Mnd  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 5 | 4 | 3ad2antl1 | ⊢ ( ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( 𝑥  +  𝑦 )  ∈  𝐵 ) | 
						
							| 6 |  | elmapi | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  →  𝑋 : 𝐼 ⟶ 𝐵 ) | 
						
							| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝑋 : 𝐼 ⟶ 𝐵 ) | 
						
							| 8 |  | elmapi | ⊢ ( 𝑌  ∈  ( 𝐵  ↑m  𝐼 )  →  𝑌 : 𝐼 ⟶ 𝐵 ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝑌 : 𝐼 ⟶ 𝐵 ) | 
						
							| 10 |  | elmapex | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  →  ( 𝐵  ∈  V  ∧  𝐼  ∈  V ) ) | 
						
							| 11 | 10 | simprd | ⊢ ( 𝑋  ∈  ( 𝐵  ↑m  𝐼 )  →  𝐼  ∈  V ) | 
						
							| 12 | 11 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  →  𝐼  ∈  V ) | 
						
							| 13 |  | inidm | ⊢ ( 𝐼  ∩  𝐼 )  =  𝐼 | 
						
							| 14 | 5 7 9 12 12 13 | off | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  →  ( 𝑋  ∘f   +  𝑌 ) : 𝐼 ⟶ 𝐵 ) | 
						
							| 15 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 16 |  | elmapg | ⊢ ( ( 𝐵  ∈  V  ∧  𝐼  ∈  V )  →  ( ( 𝑋  ∘f   +  𝑌 )  ∈  ( 𝐵  ↑m  𝐼 )  ↔  ( 𝑋  ∘f   +  𝑌 ) : 𝐼 ⟶ 𝐵 ) ) | 
						
							| 17 | 15 12 16 | sylancr | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  →  ( ( 𝑋  ∘f   +  𝑌 )  ∈  ( 𝐵  ↑m  𝐼 )  ↔  ( 𝑋  ∘f   +  𝑌 ) : 𝐼 ⟶ 𝐵 ) ) | 
						
							| 18 | 14 17 | mpbird | ⊢ ( ( 𝑀  ∈  Mnd  ∧  𝑋  ∈  ( 𝐵  ↑m  𝐼 )  ∧  𝑌  ∈  ( 𝐵  ↑m  𝐼 ) )  →  ( 𝑋  ∘f   +  𝑌 )  ∈  ( 𝐵  ↑m  𝐼 ) ) |