| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mndvcl.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
mndvcl.p |
⊢ + = ( +g ‘ 𝑀 ) |
| 3 |
|
mndvlid.z |
⊢ 0 = ( 0g ‘ 𝑀 ) |
| 4 |
|
elmapex |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → ( 𝐵 ∈ V ∧ 𝐼 ∈ V ) ) |
| 5 |
4
|
simprd |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝐼 ∈ V ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝐼 ∈ V ) |
| 7 |
|
elmapi |
⊢ ( 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 𝑋 : 𝐼 ⟶ 𝐵 ) |
| 9 |
1 3
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → 0 ∈ 𝐵 ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → 0 ∈ 𝐵 ) |
| 11 |
1 2 3
|
mndrid |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 12 |
11
|
adantlr |
⊢ ( ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 + 0 ) = 𝑥 ) |
| 13 |
6 8 10 12
|
caofid0r |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑋 ∈ ( 𝐵 ↑m 𝐼 ) ) → ( 𝑋 ∘f + ( 𝐼 × { 0 } ) ) = 𝑋 ) |