Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
2 |
|
eqid |
⊢ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
3 |
|
eqid |
⊢ ran (,) = ran (,) |
4 |
1 2 3
|
leordtval |
⊢ ( ordTop ‘ ≤ ) = ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) |
5 |
4
|
eleq2i |
⊢ ( 𝐴 ∈ ( ordTop ‘ ≤ ) ↔ 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ) |
6 |
|
tg2 |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ) |
7 |
|
elun |
⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ↔ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) ) |
8 |
|
elun |
⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ↔ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ) |
9 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) = ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) |
10 |
9
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) ) |
11 |
10
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) ) |
12 |
|
nltmnf |
⊢ ( 𝑦 ∈ ℝ* → ¬ 𝑦 < -∞ ) |
13 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
14 |
|
elioc1 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( -∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( -∞ ∈ ℝ* ∧ 𝑦 < -∞ ∧ -∞ ≤ +∞ ) ) ) |
15 |
13 14
|
mpan2 |
⊢ ( 𝑦 ∈ ℝ* → ( -∞ ∈ ( 𝑦 (,] +∞ ) ↔ ( -∞ ∈ ℝ* ∧ 𝑦 < -∞ ∧ -∞ ≤ +∞ ) ) ) |
16 |
|
simp2 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 < -∞ ∧ -∞ ≤ +∞ ) → 𝑦 < -∞ ) |
17 |
15 16
|
syl6bi |
⊢ ( 𝑦 ∈ ℝ* → ( -∞ ∈ ( 𝑦 (,] +∞ ) → 𝑦 < -∞ ) ) |
18 |
12 17
|
mtod |
⊢ ( 𝑦 ∈ ℝ* → ¬ -∞ ∈ ( 𝑦 (,] +∞ ) ) |
19 |
|
eleq2 |
⊢ ( 𝑢 = ( 𝑦 (,] +∞ ) → ( -∞ ∈ 𝑢 ↔ -∞ ∈ ( 𝑦 (,] +∞ ) ) ) |
20 |
19
|
notbid |
⊢ ( 𝑢 = ( 𝑦 (,] +∞ ) → ( ¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ ( 𝑦 (,] +∞ ) ) ) |
21 |
18 20
|
syl5ibrcom |
⊢ ( 𝑦 ∈ ℝ* → ( 𝑢 = ( 𝑦 (,] +∞ ) → ¬ -∞ ∈ 𝑢 ) ) |
22 |
21
|
rexlimiv |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ¬ -∞ ∈ 𝑢 ) |
23 |
22
|
pm2.21d |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( -∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
24 |
23
|
adantrd |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( 𝑦 (,] +∞ ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
25 |
11 24
|
sylbi |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
26 |
|
eqid |
⊢ ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) = ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) |
27 |
26
|
elrnmpt |
⊢ ( 𝑢 ∈ V → ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) ) |
28 |
27
|
elv |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) ) |
29 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
30 |
29
|
a1i |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ ∈ ℝ* ) |
31 |
|
0xr |
⊢ 0 ∈ ℝ* |
32 |
|
simprl |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 𝑦 ∈ ℝ* ) |
33 |
|
ifcl |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ) |
34 |
31 32 33
|
sylancr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ) |
35 |
13
|
a1i |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → +∞ ∈ ℝ* ) |
36 |
|
mnflt0 |
⊢ -∞ < 0 |
37 |
|
simpll |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ ∈ 𝑢 ) |
38 |
|
simprr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 𝑢 = ( -∞ [,) 𝑦 ) ) |
39 |
37 38
|
eleqtrd |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ ∈ ( -∞ [,) 𝑦 ) ) |
40 |
|
elico1 |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( -∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( -∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦 ) ) ) |
41 |
29 32 40
|
sylancr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ ∈ ( -∞ [,) 𝑦 ) ↔ ( -∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦 ) ) ) |
42 |
39 41
|
mpbid |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦 ) ) |
43 |
42
|
simp3d |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ < 𝑦 ) |
44 |
|
breq2 |
⊢ ( 0 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( -∞ < 0 ↔ -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ) |
45 |
|
breq2 |
⊢ ( 𝑦 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( -∞ < 𝑦 ↔ -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ) |
46 |
44 45
|
ifboth |
⊢ ( ( -∞ < 0 ∧ -∞ < 𝑦 ) → -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) |
47 |
36 43 46
|
sylancr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) |
48 |
31
|
a1i |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 0 ∈ ℝ* ) |
49 |
|
xrmin1 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 0 ) |
50 |
31 32 49
|
sylancr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 0 ) |
51 |
|
0re |
⊢ 0 ∈ ℝ |
52 |
|
ltpnf |
⊢ ( 0 ∈ ℝ → 0 < +∞ ) |
53 |
51 52
|
mp1i |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 0 < +∞ ) |
54 |
34 48 35 50 53
|
xrlelttrd |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) < +∞ ) |
55 |
|
xrre2 |
⊢ ( ( ( -∞ ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ ( -∞ < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) < +∞ ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ ) |
56 |
30 34 35 47 54 55
|
syl32anc |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ ) |
57 |
|
xrmin2 |
⊢ ( ( 0 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) |
58 |
31 32 57
|
sylancr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) |
59 |
|
df-ico |
⊢ [,) = ( 𝑎 ∈ ℝ* , 𝑏 ∈ ℝ* ↦ { 𝑐 ∈ ℝ* ∣ ( 𝑎 ≤ 𝑐 ∧ 𝑐 < 𝑏 ) } ) |
60 |
|
xrltletr |
⊢ ( ( 𝑥 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) → ( ( 𝑥 < if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) → 𝑥 < 𝑦 ) ) |
61 |
59 59 60
|
ixxss2 |
⊢ ( ( 𝑦 ∈ ℝ* ∧ if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ≤ 𝑦 ) → ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ ( -∞ [,) 𝑦 ) ) |
62 |
32 58 61
|
syl2anc |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ ( -∞ [,) 𝑦 ) ) |
63 |
|
simplr |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → 𝑢 ⊆ 𝐴 ) |
64 |
38 63
|
eqsstrrd |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ [,) 𝑦 ) ⊆ 𝐴 ) |
65 |
62 64
|
sstrd |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ 𝐴 ) |
66 |
|
oveq2 |
⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( -∞ [,) 𝑥 ) = ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ) |
67 |
66
|
sseq1d |
⊢ ( 𝑥 = if ( 0 ≤ 𝑦 , 0 , 𝑦 ) → ( ( -∞ [,) 𝑥 ) ⊆ 𝐴 ↔ ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ 𝐴 ) ) |
68 |
67
|
rspcev |
⊢ ( ( if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ∈ ℝ ∧ ( -∞ [,) if ( 0 ≤ 𝑦 , 0 , 𝑦 ) ) ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
69 |
56 65 68
|
syl2anc |
⊢ ( ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) ∧ ( 𝑦 ∈ ℝ* ∧ 𝑢 = ( -∞ [,) 𝑦 ) ) ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
70 |
69
|
rexlimdvaa |
⊢ ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
71 |
70
|
com12 |
⊢ ( ∃ 𝑦 ∈ ℝ* 𝑢 = ( -∞ [,) 𝑦 ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
72 |
28 71
|
sylbi |
⊢ ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
73 |
25 72
|
jaoi |
⊢ ( ( 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∨ 𝑢 ∈ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
74 |
8 73
|
sylbi |
⊢ ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
75 |
|
mnfnre |
⊢ -∞ ∉ ℝ |
76 |
75
|
neli |
⊢ ¬ -∞ ∈ ℝ |
77 |
|
elssuni |
⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ∪ ran (,) ) |
78 |
|
unirnioo |
⊢ ℝ = ∪ ran (,) |
79 |
77 78
|
sseqtrrdi |
⊢ ( 𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ ) |
80 |
79
|
sseld |
⊢ ( 𝑢 ∈ ran (,) → ( -∞ ∈ 𝑢 → -∞ ∈ ℝ ) ) |
81 |
76 80
|
mtoi |
⊢ ( 𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢 ) |
82 |
81
|
pm2.21d |
⊢ ( 𝑢 ∈ ran (,) → ( -∞ ∈ 𝑢 → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
83 |
82
|
adantrd |
⊢ ( 𝑢 ∈ ran (,) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
84 |
74 83
|
jaoi |
⊢ ( ( 𝑢 ∈ ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∨ 𝑢 ∈ ran (,) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
85 |
7 84
|
sylbi |
⊢ ( 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) → ( ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) ) |
86 |
85
|
rexlimiv |
⊢ ( ∃ 𝑢 ∈ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ( -∞ ∈ 𝑢 ∧ 𝑢 ⊆ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
87 |
6 86
|
syl |
⊢ ( ( 𝐴 ∈ ( topGen ‘ ( ( ran ( 𝑦 ∈ ℝ* ↦ ( 𝑦 (,] +∞ ) ) ∪ ran ( 𝑦 ∈ ℝ* ↦ ( -∞ [,) 𝑦 ) ) ) ∪ ran (,) ) ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |
88 |
5 87
|
sylanb |
⊢ ( ( 𝐴 ∈ ( ordTop ‘ ≤ ) ∧ -∞ ∈ 𝐴 ) → ∃ 𝑥 ∈ ℝ ( -∞ [,) 𝑥 ) ⊆ 𝐴 ) |