Metamath Proof Explorer


Theorem mnfnre

Description: Minus infinity is not a real number. (Contributed by NM, 13-Oct-2005)

Ref Expression
Assertion mnfnre -∞ ∉ ℝ

Proof

Step Hyp Ref Expression
1 df-mnf -∞ = 𝒫 +∞
2 df-pnf +∞ = 𝒫
3 2 pweqi 𝒫 +∞ = 𝒫 𝒫
4 1 3 eqtri -∞ = 𝒫 𝒫
5 2pwuninel ¬ 𝒫 𝒫 ℂ ∈ ℂ
6 4 5 eqneltri ¬ -∞ ∈ ℂ
7 recn ( -∞ ∈ ℝ → -∞ ∈ ℂ )
8 6 7 mto ¬ -∞ ∈ ℝ
9 8 nelir -∞ ∉ ℝ