Metamath Proof Explorer
		
		
		Theorem mo0
		Description:  "At most one" element in an empty set.  (Contributed by Zhi Wang, 19-Sep-2024)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | mo0 | ⊢  ( 𝐴  =  ∅  →  ∃* 𝑥 𝑥  ∈  𝐴 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | vsn | ⊢ { V }  =  ∅ | 
						
							| 2 | 1 | eqcomi | ⊢ ∅  =  { V } | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝐴  =  ∅  →  ( 𝐴  =  { V }  ↔  ∅  =  { V } ) ) | 
						
							| 4 | 2 3 | mpbiri | ⊢ ( 𝐴  =  ∅  →  𝐴  =  { V } ) | 
						
							| 5 |  | mosn | ⊢ ( 𝐴  =  { V }  →  ∃* 𝑥 𝑥  ∈  𝐴 ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐴  =  ∅  →  ∃* 𝑥 𝑥  ∈  𝐴 ) |