Metamath Proof Explorer


Theorem mo0

Description: "At most one" element in an empty set. (Contributed by Zhi Wang, 19-Sep-2024)

Ref Expression
Assertion mo0 ( 𝐴 = ∅ → ∃* 𝑥 𝑥𝐴 )

Proof

Step Hyp Ref Expression
1 vsn { V } = ∅
2 1 eqcomi ∅ = { V }
3 eqeq1 ( 𝐴 = ∅ → ( 𝐴 = { V } ↔ ∅ = { V } ) )
4 2 3 mpbiri ( 𝐴 = ∅ → 𝐴 = { V } )
5 mosn ( 𝐴 = { V } → ∃* 𝑥 𝑥𝐴 )
6 4 5 syl ( 𝐴 = ∅ → ∃* 𝑥 𝑥𝐴 )