Step |
Hyp |
Ref |
Expression |
1 |
|
nfv |
⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 |
2 |
|
nfv |
⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 |
3 |
|
eleq1w |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) |
4 |
1 2 3
|
cbvmow |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃* 𝑧 𝑧 ∈ 𝐴 ) |
5 |
|
neq0 |
⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
6 |
5
|
anbi1i |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ↔ ( ∃ 𝑧 𝑧 ∈ 𝐴 ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ) |
7 |
|
df-eu |
⊢ ( ∃! 𝑧 𝑧 ∈ 𝐴 ↔ ( ∃ 𝑧 𝑧 ∈ 𝐴 ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ) |
8 |
|
eu6 |
⊢ ( ∃! 𝑧 𝑧 ∈ 𝐴 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
9 |
6 7 8
|
3bitr2i |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
10 |
|
dfcleq |
⊢ ( 𝐴 = { 𝑦 } ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑦 } ) ) |
11 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝑦 } ↔ 𝑧 = 𝑦 ) |
12 |
11
|
bibi2i |
⊢ ( ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑦 } ) ↔ ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
13 |
12
|
albii |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑦 } ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
14 |
10 13
|
sylbbr |
⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) → 𝐴 = { 𝑦 } ) |
15 |
14
|
eximi |
⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) → ∃ 𝑦 𝐴 = { 𝑦 } ) |
16 |
9 15
|
sylbi |
⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) → ∃ 𝑦 𝐴 = { 𝑦 } ) |
17 |
16
|
expcom |
⊢ ( ∃* 𝑧 𝑧 ∈ 𝐴 → ( ¬ 𝐴 = ∅ → ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
18 |
17
|
orrd |
⊢ ( ∃* 𝑧 𝑧 ∈ 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
19 |
|
mo0 |
⊢ ( 𝐴 = ∅ → ∃* 𝑧 𝑧 ∈ 𝐴 ) |
20 |
|
mosn |
⊢ ( 𝐴 = { 𝑦 } → ∃* 𝑧 𝑧 ∈ 𝐴 ) |
21 |
20
|
exlimiv |
⊢ ( ∃ 𝑦 𝐴 = { 𝑦 } → ∃* 𝑧 𝑧 ∈ 𝐴 ) |
22 |
19 21
|
jaoi |
⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) → ∃* 𝑧 𝑧 ∈ 𝐴 ) |
23 |
18 22
|
impbii |
⊢ ( ∃* 𝑧 𝑧 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
24 |
4 23
|
bitri |
⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |