| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqeq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝐴 ) ) |
| 2 |
1
|
imbi2d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 3 |
2
|
albidv |
⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) ) ) |
| 4 |
3
|
imbi1d |
⊢ ( 𝑦 = 𝐴 → ( ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) ↔ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) ) ) |
| 5 |
|
equequ2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑥 = 𝑦 ↔ 𝑥 = 𝑧 ) ) |
| 6 |
5
|
imbi2d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝜑 → 𝑥 = 𝑦 ) ↔ ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 7 |
6
|
albidv |
⊢ ( 𝑦 = 𝑧 → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) ) |
| 8 |
7
|
19.8aw |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 9 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 10 |
8 9
|
sylibr |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) |
| 11 |
4 10
|
vtoclg |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) ) |
| 12 |
|
eqvisset |
⊢ ( 𝑥 = 𝐴 → 𝐴 ∈ V ) |
| 13 |
12
|
imim2i |
⊢ ( ( 𝜑 → 𝑥 = 𝐴 ) → ( 𝜑 → 𝐴 ∈ V ) ) |
| 14 |
13
|
con3rr3 |
⊢ ( ¬ 𝐴 ∈ V → ( ( 𝜑 → 𝑥 = 𝐴 ) → ¬ 𝜑 ) ) |
| 15 |
14
|
alimdv |
⊢ ( ¬ 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∀ 𝑥 ¬ 𝜑 ) ) |
| 16 |
|
alnex |
⊢ ( ∀ 𝑥 ¬ 𝜑 ↔ ¬ ∃ 𝑥 𝜑 ) |
| 17 |
|
nexmo |
⊢ ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) |
| 18 |
16 17
|
sylbi |
⊢ ( ∀ 𝑥 ¬ 𝜑 → ∃* 𝑥 𝜑 ) |
| 19 |
15 18
|
syl6 |
⊢ ( ¬ 𝐴 ∈ V → ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) ) |
| 20 |
11 19
|
pm2.61i |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝐴 ) → ∃* 𝑥 𝜑 ) |