| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqeq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝐴 ) ) | 
						
							| 2 | 1 | imbi2d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝐴 ) ) ) | 
						
							| 3 | 2 | albidv | ⊢ ( 𝑦  =  𝐴  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 ) ) ) | 
						
							| 4 | 3 | imbi1d | ⊢ ( 𝑦  =  𝐴  →  ( ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  →  ∃* 𝑥 𝜑 )  ↔  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) ) ) | 
						
							| 5 |  | equequ2 | ⊢ ( 𝑦  =  𝑧  →  ( 𝑥  =  𝑦  ↔  𝑥  =  𝑧 ) ) | 
						
							| 6 | 5 | imbi2d | ⊢ ( 𝑦  =  𝑧  →  ( ( 𝜑  →  𝑥  =  𝑦 )  ↔  ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 7 | 6 | albidv | ⊢ ( 𝑦  =  𝑧  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑧 ) ) ) | 
						
							| 8 | 7 | 19.8aw | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  →  ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) | 
						
							| 9 |  | df-mo | ⊢ ( ∃* 𝑥 𝜑  ↔  ∃ 𝑦 ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 ) ) | 
						
							| 10 | 8 9 | sylibr | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝑦 )  →  ∃* 𝑥 𝜑 ) | 
						
							| 11 | 4 10 | vtoclg | ⊢ ( 𝐴  ∈  V  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) ) | 
						
							| 12 |  | eqvisset | ⊢ ( 𝑥  =  𝐴  →  𝐴  ∈  V ) | 
						
							| 13 | 12 | imim2i | ⊢ ( ( 𝜑  →  𝑥  =  𝐴 )  →  ( 𝜑  →  𝐴  ∈  V ) ) | 
						
							| 14 | 13 | con3rr3 | ⊢ ( ¬  𝐴  ∈  V  →  ( ( 𝜑  →  𝑥  =  𝐴 )  →  ¬  𝜑 ) ) | 
						
							| 15 | 14 | alimdv | ⊢ ( ¬  𝐴  ∈  V  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∀ 𝑥 ¬  𝜑 ) ) | 
						
							| 16 |  | alnex | ⊢ ( ∀ 𝑥 ¬  𝜑  ↔  ¬  ∃ 𝑥 𝜑 ) | 
						
							| 17 |  | nexmo | ⊢ ( ¬  ∃ 𝑥 𝜑  →  ∃* 𝑥 𝜑 ) | 
						
							| 18 | 16 17 | sylbi | ⊢ ( ∀ 𝑥 ¬  𝜑  →  ∃* 𝑥 𝜑 ) | 
						
							| 19 | 15 18 | syl6 | ⊢ ( ¬  𝐴  ∈  V  →  ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) ) | 
						
							| 20 | 11 19 | pm2.61i | ⊢ ( ∀ 𝑥 ( 𝜑  →  𝑥  =  𝐴 )  →  ∃* 𝑥 𝜑 ) |