Step |
Hyp |
Ref |
Expression |
1 |
|
mo3.nf |
⊢ Ⅎ 𝑦 𝜑 |
2 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
3 |
1
|
nfmov |
⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑 |
4 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) |
5 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
6 |
|
spsbim |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ) ) |
7 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) |
8 |
6 7
|
syl6ib |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑧 ) ) |
9 |
5 8
|
anim12d |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑧 ) ) ) |
10 |
|
equtr2 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑦 ) |
11 |
9 10
|
syl6 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
12 |
11
|
exlimiv |
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
13 |
4 12
|
sylbi |
⊢ ( ∃* 𝑥 𝜑 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
14 |
3 13
|
alrimi |
⊢ ( ∃* 𝑥 𝜑 → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
15 |
2 14
|
alrimi |
⊢ ( ∃* 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
16 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
17 |
|
pm3.21 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜑 → ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
18 |
17
|
imim1d |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
19 |
16 18
|
alimd |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
20 |
19
|
com12 |
⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
21 |
20
|
aleximi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
22 |
1
|
sb8ev |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
23 |
1
|
mof |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
24 |
21 22 23
|
3imtr4g |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) ) |
25 |
|
moabs |
⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) ) |
26 |
24 25
|
sylibr |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) |
27 |
26
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) |
28 |
15 27
|
impbii |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |