| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mo3.nf |
⊢ Ⅎ 𝑦 𝜑 |
| 2 |
|
nfmo1 |
⊢ Ⅎ 𝑥 ∃* 𝑥 𝜑 |
| 3 |
1
|
nfmov |
⊢ Ⅎ 𝑦 ∃* 𝑥 𝜑 |
| 4 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 5 |
|
sp |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( 𝜑 → 𝑥 = 𝑧 ) ) |
| 6 |
|
spsbim |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ) ) |
| 7 |
|
equsb3 |
⊢ ( [ 𝑦 / 𝑥 ] 𝑥 = 𝑧 ↔ 𝑦 = 𝑧 ) |
| 8 |
6 7
|
imbitrdi |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → 𝑦 = 𝑧 ) ) |
| 9 |
5 8
|
anim12d |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑧 ) ) ) |
| 10 |
|
equtr2 |
⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑧 ) → 𝑥 = 𝑦 ) |
| 11 |
9 10
|
syl6 |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 12 |
11
|
exlimiv |
⊢ ( ∃ 𝑧 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑧 ) → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 13 |
4 12
|
sylbi |
⊢ ( ∃* 𝑥 𝜑 → ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 14 |
3 13
|
alrimi |
⊢ ( ∃* 𝑥 𝜑 → ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 15 |
2 14
|
alrimi |
⊢ ( ∃* 𝑥 𝜑 → ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 16 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
| 17 |
|
pm3.21 |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( 𝜑 → ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ) ) |
| 18 |
17
|
imim1d |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 19 |
16 18
|
alimd |
⊢ ( [ 𝑦 / 𝑥 ] 𝜑 → ( ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 20 |
19
|
com12 |
⊢ ( ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( [ 𝑦 / 𝑥 ] 𝜑 → ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 21 |
20
|
aleximi |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 → ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 22 |
1
|
sb8ef |
⊢ ( ∃ 𝑥 𝜑 ↔ ∃ 𝑦 [ 𝑦 / 𝑥 ] 𝜑 ) |
| 23 |
1
|
mof |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 24 |
21 22 23
|
3imtr4g |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) ) |
| 25 |
|
moabs |
⊢ ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) ) |
| 26 |
24 25
|
sylibr |
⊢ ( ∀ 𝑦 ∀ 𝑥 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) |
| 27 |
26
|
alcoms |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) → ∃* 𝑥 𝜑 ) |
| 28 |
15 27
|
impbii |
⊢ ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ) |