Metamath Proof Explorer


Theorem mo4f

Description: At-most-one quantifier expressed using implicit substitution. Note that the disjoint variable condition on y , ph can be replaced by the nonfreeness hypothesis |- F/ y ph with essentially the same proof. (Contributed by NM, 10-Apr-2004) Remove dependency on ax-13 . (Revised by Wolf Lammen, 19-Jan-2023)

Ref Expression
Hypotheses mo4f.1 𝑥 𝜓
mo4f.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
Assertion mo4f ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 mo4f.1 𝑥 𝜓
2 mo4f.2 ( 𝑥 = 𝑦 → ( 𝜑𝜓 ) )
3 nfv 𝑦 𝜑
4 3 mo3 ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) )
5 1 2 sbiev ( [ 𝑦 / 𝑥 ] 𝜑𝜓 )
6 5 anbi2i ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ( 𝜑𝜓 ) )
7 6 imbi1i ( ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )
8 7 2albii ( ∀ 𝑥𝑦 ( ( 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )
9 4 8 bitri ( ∃* 𝑥 𝜑 ↔ ∀ 𝑥𝑦 ( ( 𝜑𝜓 ) → 𝑥 = 𝑦 ) )