Step |
Hyp |
Ref |
Expression |
1 |
|
df-mo |
⊢ ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
2 |
|
abss |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑦 } ↔ ∀ 𝑥 ( 𝜑 → 𝑥 ∈ { 𝑦 } ) ) |
3 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝑦 } ↔ 𝑥 = 𝑦 ) |
4 |
3
|
imbi2i |
⊢ ( ( 𝜑 → 𝑥 ∈ { 𝑦 } ) ↔ ( 𝜑 → 𝑥 = 𝑦 ) ) |
5 |
4
|
albii |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 ∈ { 𝑦 } ) ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
6 |
2 5
|
bitri |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑦 } ↔ ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) ) |
7 |
|
snex |
⊢ { 𝑦 } ∈ V |
8 |
7
|
ssex |
⊢ ( { 𝑥 ∣ 𝜑 } ⊆ { 𝑦 } → { 𝑥 ∣ 𝜑 } ∈ V ) |
9 |
6 8
|
sylbir |
⊢ ( ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ∈ V ) |
10 |
9
|
exlimiv |
⊢ ( ∃ 𝑦 ∀ 𝑥 ( 𝜑 → 𝑥 = 𝑦 ) → { 𝑥 ∣ 𝜑 } ∈ V ) |
11 |
1 10
|
sylbi |
⊢ ( ∃* 𝑥 𝜑 → { 𝑥 ∣ 𝜑 } ∈ V ) |