Metamath Proof Explorer


Theorem moabex

Description: "At most one" existence implies a class abstraction exists. (Contributed by NM, 30-Dec-1996)

Ref Expression
Assertion moabex ( ∃* 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )

Proof

Step Hyp Ref Expression
1 df-mo ( ∃* 𝑥 𝜑 ↔ ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) )
2 abss ( { 𝑥𝜑 } ⊆ { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 ∈ { 𝑦 } ) )
3 velsn ( 𝑥 ∈ { 𝑦 } ↔ 𝑥 = 𝑦 )
4 3 imbi2i ( ( 𝜑𝑥 ∈ { 𝑦 } ) ↔ ( 𝜑𝑥 = 𝑦 ) )
5 4 albii ( ∀ 𝑥 ( 𝜑𝑥 ∈ { 𝑦 } ) ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
6 2 5 bitri ( { 𝑥𝜑 } ⊆ { 𝑦 } ↔ ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) )
7 snex { 𝑦 } ∈ V
8 7 ssex ( { 𝑥𝜑 } ⊆ { 𝑦 } → { 𝑥𝜑 } ∈ V )
9 6 8 sylbir ( ∀ 𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝜑 } ∈ V )
10 9 exlimiv ( ∃ 𝑦𝑥 ( 𝜑𝑥 = 𝑦 ) → { 𝑥𝜑 } ∈ V )
11 1 10 sylbi ( ∃* 𝑥 𝜑 → { 𝑥𝜑 } ∈ V )