Metamath Proof Explorer


Theorem moabs

Description: Absorption of existence condition by uniqueness. (Contributed by NM, 4-Nov-2002) Shorten proof and avoid df-eu . (Revised by BJ, 14-Oct-2022)

Ref Expression
Assertion moabs ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ax-1 ( ∃* 𝑥 𝜑 → ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) )
2 nexmo ( ¬ ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 )
3 id ( ∃* 𝑥 𝜑 → ∃* 𝑥 𝜑 )
4 2 3 ja ( ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) → ∃* 𝑥 𝜑 )
5 1 4 impbii ( ∃* 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∃* 𝑥 𝜑 ) )