Metamath Proof Explorer
Description: Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006) (Proof shortened by Wolf Lammen, 27-Dec-2018)
|
|
Ref |
Expression |
|
Assertion |
moaneu |
⊢ ∃* 𝑥 ( 𝜑 ∧ ∃! 𝑥 𝜑 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
moanmo |
⊢ ∃* 𝑥 ( 𝜑 ∧ ∃* 𝑥 𝜑 ) |
2 |
|
eumo |
⊢ ( ∃! 𝑥 𝜑 → ∃* 𝑥 𝜑 ) |
3 |
2
|
anim2i |
⊢ ( ( 𝜑 ∧ ∃! 𝑥 𝜑 ) → ( 𝜑 ∧ ∃* 𝑥 𝜑 ) ) |
4 |
3
|
moimi |
⊢ ( ∃* 𝑥 ( 𝜑 ∧ ∃* 𝑥 𝜑 ) → ∃* 𝑥 ( 𝜑 ∧ ∃! 𝑥 𝜑 ) ) |
5 |
1 4
|
ax-mp |
⊢ ∃* 𝑥 ( 𝜑 ∧ ∃! 𝑥 𝜑 ) |