Metamath Proof Explorer
		
		
		
		Description:  Nested at-most-one and unique existential quantifiers.  (Contributed by NM, 25-Jan-2006)  (Proof shortened by Wolf Lammen, 27-Dec-2018)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | moaneu | ⊢  ∃* 𝑥 ( 𝜑  ∧  ∃! 𝑥 𝜑 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | moanmo | ⊢ ∃* 𝑥 ( 𝜑  ∧  ∃* 𝑥 𝜑 ) | 
						
							| 2 |  | eumo | ⊢ ( ∃! 𝑥 𝜑  →  ∃* 𝑥 𝜑 ) | 
						
							| 3 | 2 | anim2i | ⊢ ( ( 𝜑  ∧  ∃! 𝑥 𝜑 )  →  ( 𝜑  ∧  ∃* 𝑥 𝜑 ) ) | 
						
							| 4 | 3 | moimi | ⊢ ( ∃* 𝑥 ( 𝜑  ∧  ∃* 𝑥 𝜑 )  →  ∃* 𝑥 ( 𝜑  ∧  ∃! 𝑥 𝜑 ) ) | 
						
							| 5 | 1 4 | ax-mp | ⊢ ∃* 𝑥 ( 𝜑  ∧  ∃! 𝑥 𝜑 ) |