Metamath Proof Explorer


Theorem moanim

Description: Introduction of a conjunct into "at most one" quantifier. For a version requiring disjoint variables, but fewer axioms, see moanimv . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 24-Dec-2018)

Ref Expression
Hypothesis moanim.1 𝑥 𝜑
Assertion moanim ( ∃* 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 moanim.1 𝑥 𝜑
2 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
3 1 2 mobid ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 ( 𝜑𝜓 ) ) )
4 simpl ( ( 𝜑𝜓 ) → 𝜑 )
5 1 4 exlimi ( ∃ 𝑥 ( 𝜑𝜓 ) → 𝜑 )
6 3 5 moanimlem ( ∃* 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) )