Metamath Proof Explorer


Theorem moanimlem

Description: Factor out the common proof skeleton of moanimv and moanim . (Contributed by NM, 3-Dec-2001) (Proof shortened by Wolf Lammen, 24-Dec-2018) Factor out common proof lines. (Revised by Wolf Lammen, 8-Feb-2023)

Ref Expression
Hypotheses moanimlem.1 ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 ( 𝜑𝜓 ) ) )
moanimlem.2 ( ∃ 𝑥 ( 𝜑𝜓 ) → 𝜑 )
Assertion moanimlem ( ∃* 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 moanimlem.1 ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 ( 𝜑𝜓 ) ) )
2 moanimlem.2 ( ∃ 𝑥 ( 𝜑𝜓 ) → 𝜑 )
3 1 biimprcd ( ∃* 𝑥 ( 𝜑𝜓 ) → ( 𝜑 → ∃* 𝑥 𝜓 ) )
4 nexmo ( ¬ ∃ 𝑥 ( 𝜑𝜓 ) → ∃* 𝑥 ( 𝜑𝜓 ) )
5 2 4 nsyl5 ( ¬ 𝜑 → ∃* 𝑥 ( 𝜑𝜓 ) )
6 moan ( ∃* 𝑥 𝜓 → ∃* 𝑥 ( 𝜑𝜓 ) )
7 5 6 ja ( ( 𝜑 → ∃* 𝑥 𝜓 ) → ∃* 𝑥 ( 𝜑𝜓 ) )
8 3 7 impbii ( ∃* 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) )