Metamath Proof Explorer


Theorem moanimv

Description: Introduction of a conjunct into an at-most-one quantifier. Version of moanim requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023)

Ref Expression
Assertion moanimv ( ∃* 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) )

Proof

Step Hyp Ref Expression
1 ibar ( 𝜑 → ( 𝜓 ↔ ( 𝜑𝜓 ) ) )
2 1 mobidv ( 𝜑 → ( ∃* 𝑥 𝜓 ↔ ∃* 𝑥 ( 𝜑𝜓 ) ) )
3 simpl ( ( 𝜑𝜓 ) → 𝜑 )
4 3 exlimiv ( ∃ 𝑥 ( 𝜑𝜓 ) → 𝜑 )
5 2 4 moanimlem ( ∃* 𝑥 ( 𝜑𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 𝜓 ) )