Metamath Proof Explorer


Theorem moanmo

Description: Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006)

Ref Expression
Assertion moanmo ∃* 𝑥 ( 𝜑 ∧ ∃* 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 id ( ∃* 𝑥 𝜑 → ∃* 𝑥 𝜑 )
2 nfmo1 𝑥 ∃* 𝑥 𝜑
3 2 moanim ( ∃* 𝑥 ( ∃* 𝑥 𝜑𝜑 ) ↔ ( ∃* 𝑥 𝜑 → ∃* 𝑥 𝜑 ) )
4 1 3 mpbir ∃* 𝑥 ( ∃* 𝑥 𝜑𝜑 )
5 ancom ( ( 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ( ∃* 𝑥 𝜑𝜑 ) )
6 5 mobii ( ∃* 𝑥 ( 𝜑 ∧ ∃* 𝑥 𝜑 ) ↔ ∃* 𝑥 ( ∃* 𝑥 𝜑𝜑 ) )
7 4 6 mpbir ∃* 𝑥 ( 𝜑 ∧ ∃* 𝑥 𝜑 )